Keyword: simulation
Paper Title Other Keywords Page
MO2I02 Fast Orbit Feedback for Diamond-II controls, storage-ring, feedback, electron 1
  • I. Kempf, M.G. Abbott, L. Bobb, G.B. Christian
    DLS, Harwell, United Kingdom
  • S. Duncan
    University of Oxford, Oxford, United Kingdom
  • G. Rehm
    HZB, Berlin, Germany
  Funding: Diamond Light Source and Engineering and Physical Sciences Research Council
The electron beam stability is critical for 4th generation light sources. As opposed to 10% of beam size up to 140 Hz at Diamond, advances in detector speed and resolution at Diamond-II increase the stability requirements to 3% up to 1 kHz. This paper presents a novel control methodology for the fast orbit feedback at Diamond-II, which will stabilise the beam using two arrays of 252 slow and 144 fast correctors and 252 beam position monitors at 100 kHz. In contrast to existing approaches that separate slow and fast feedback loops, our approach is based on a two-matrix factorisation called the generalised singular value decomposition (GSVD), which decouples the system into 144 two-input modes controlled by slow and fast magnets and 108 modes controlled by slow magnets only. The GSVD-based controller is implemented in the existing Diamond storage ring using a centralised communication architecture, such as planned for Diamond-II. We present results from the Diamond storage ring and simulation, which confirm that the proposed approach meets the target specification for Diamond-II.
slides icon Slides MO2I02 [3.686 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MO2I02  
About • Received ※ 06 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 11 September 2023 — Issue date ※ 18 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP002 MiniBEE - Minibeam Beamline for Preclinical Experiments proton, radiation, target, cyclotron 34
  • J. Reindl, G. Datzmann, G. Dollinger, J. Neubauer, A. Rousseti
    Universität der Bundeswehr Muenchen, Neubiberg, Germany
  • J. Bundesmann, A. Denker, A. Dittwald, G. Kourkafas
    HZB, Berlin, Germany
  • G. Datzmann
    Datzmann Interact & Innovate GmbH, München, Germany
  • A. Denker
    BHT, Berlin, Germany
  Spatial fractionated radiotherapy using protons, so-called proton minibeam radiotherapy (pMBT) was developed for better sparing of normal tissue in the entrance channel of radiation. Progressing towards clinical use, pMBT should overcome current technical and biomedical limitations. This work discusses a preclinical pMBT facility, currently built at the 68.5MeV cyclotron at the Helmholtz Zentrum Berlin. The goal is to irradiate small animals using focused pMBT with a σ of 50µm, a high peak-to-valley dose ratio at center-to-center distance as small as 1mm and beam current of 1nA. A first degrader defines the maximum energy of the beam. Dipole magnets and quadrupole triplets transport the beam to the treatment room while multiple slits properly form the transverse beam profiles. A high magnetic field gradient triplet lens forms the minibeams in front of the target station and, scanning magnets are used for a raster scan at the target. An additional degrader, positioned close before the focusing spot and the target, further reduces the energy, forming a spread-out Bragg peak. A small animal radiation research platform will be used for imaging and positioning of the target.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP002  
About • Received ※ 09 September 2023 — Revised ※ 14 September 2023 — Accepted ※ 25 September 2023 — Issue date ※ 29 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP004 Design and Study of Cavity Quadrupole Moment and Energy Spread Monitor cavity, quadrupole, framework, linac 37
  • Q. Wang, Q.Y. Dong, L.T. Huang
    DICP, Dalian, Liaoning, People’s Republic of China
  • Q. Luo
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  A nondestructive method to measure beam energy spread using the quadrupole modes within a microwave cavity is proposed. Compared with a button beam position monitor (BBPM) or a stripline beam position monitor (SBPM), the cavity monitor is a narrow band pickup and therefore has better signal-to-noise ratio (SNR) and resolution. In this study, a rectangular cavity monitor is designed. TM220 mode operating at 4.76 GHz in the cavity reflects the quadrupole moment of the beam. The cavity plans to be installed behind a bending magnet in Dalian Coherent Light Source (DCLS), an extreme ultraviolet FEL facility. In this position, the beam has a larger dispersion, which is beneficial to measure the energy spread. A quadrupole magnet, a fluorescent screen, and a SBPM with eight electrodes is installed near the cavity for calibration and comparison. The systematic framework and simulation results are also discussed in this paper.  
poster icon Poster MOP004 [0.882 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP004  
About • Received ※ 13 July 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 28 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP010 Diagnostics for a High Emittance and High Energy Spread Positron Source diagnostics, pick-up, positron, experiment 54
  • N. Vallis, P. Craievich, R.F. Fortunati, R. Ischebeck, E. Ismaili, P.N. Juranič, F. Marcellini, G.L. Orlandi, M. Schaer, R. Zennaro, M. Zykova
    PSI, Villigen PSI, Switzerland
  Funding: This work was done under the auspices of CHART (
This paper is an overview of a diagnostics setup for highly spread e⁺e⁻ beams, to be installed at the PSI Positron Production (P3 or P-cubed) experiment. To be hosted at the SwissFEL facility (PSI, Switzerland) in 2026, P3 is e+ source demonstrator designed to generate, capture, separate and detect nano-Coulombs of secondary e+ and e- bunches, in spite of their extreme tranverse emittance and energy spread. The experiment will employ an arrangement of broadband pick-ups (BBPs) to detect simultaneously the time structure of secondary e⁺e⁻ bunches. A spectrometer will follow the BBPs and deflect the e+ and e- onto two unconventional faraday cups that will measure their charge. In addition, the energy spectrum of e+ and e- distribution will be reconstructed through scintillating fibers.
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP010  
About • Received ※ 05 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 25 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP041 Modified Fast Orbit Feedback Controller for Disturbance Attenuation in Long Straights for Diamond-II controls, target, electron, feedback 119
  • S. Banerjee, M.G. Abbott, L. Bobb, I. Kempf
    DLS, Harwell, United Kingdom
  • I. Kempf
    University of Oxford, Oxford, United Kingdom
  At Diamond Light Source, the fast orbit feedback (FOFB) uses one array of correctors and the controller is designed using the internal model control (IMC) structure. The Diamond-II upgrade will introduce an additional array of fast correctors and a new controller that is designed using the generalised modal decomposition, increasing the overall closed-loop bandwidth from 140 Hz to 1 kHz. Although simulation results have shown that the resulting beam displacement is within specification in all straights, they have also shown that the performance on long straights is limited, particularly in the vertical plane. In this paper, the controller is tuned in order to increase the FOFB performance in long straights by introducing a mode-by-mode regularisation parameter. The performance of the controller beyond 1 kHz is assessed using new disturbance data and a new measurement noise model, showing that the Diamond-II performance criteria are met, even in the presence of measurement noise.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP041  
About • Received ※ 07 September 2023 — Revised ※ 09 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 16 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP043 Using Lag Compensator in Orbit Feedback feedback, power-supply, vacuum, operation 123
  • I. Pinayev
    BNL, Upton, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
Growing demand on the beam orbit stability requires higher loop gain within the operational bandwidth. Increasing the gain leads to the increase of the unity gain frequency and creates problems with systems stability due to the additional phase shifts caused by the trims (power supplies, eddy currents in vacuum chambers, etc.) and filtering of beam position data. Conventionally employed systems have 20 dB/decade slope near the unity gain providing 90 degrees phase shift which is sufficient for stability. Utilizing one or more lag compensators allows to increase the gain at low frequencies while keeping phase margin acceptable. The paper provides more details on the proposed solution as well as simulations of how the transients will be modified.
poster icon Poster MOP043 [0.230 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP043  
About • Received ※ 25 August 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 23 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP004 Detector Response Studies of the ESS Ionization Chamber detector, linac, neutron, target 183
  • I. Dolenc Kittelmann, V. Grishin
    ESS, Lund, Sweden
  • P. Boutachkov
    GSI, Darmstadt, Germany
  • E. Effinger, A.T. Lernevall, W. Viganò, C. Zamantzas
    CERN, Meyrin, Switzerland
  The European Spallation Source (ESS), currently under construction in Lund, Sweden, will be a pulsed neutron source based on a proton linac. The ESS linac is designed to deliver a 2GeV beam with peak current of 62.5mA at 14 Hz to a rotating tungsten target for neutron production. One of the most critical elements for protection of an accelerator is a Beam Loss Monitoring (BLM) system. The system is designed to protect the accelerator from beam-induced damage and unnecessary activation of the components. The main ESS BLM system is based on ionization chamber (IC) detectors. The detector was originally designed for the LHC at CERN resulting in production of 4250 monitors in 2006-2008. In 2014-2017 a new production of 830 detectors with a modified design was carried out to replenish spares for LHC and make a new series for ESS and GSI. This contribution focuses on the results from a measurement campaigns performed at the HRM (High-Radiation to Materials) facility at CERN, where detector response of the ESS type IC has been studied. The results may be of interest for other facilities, that are using existing or plan to use new generation of LHC type IC monitors as BLM detectors.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP004  
About • Received ※ 04 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 16 September 2023 — Issue date ※ 21 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP006 Simulation and Shot-by-Shot Monitoring of Linac Beam Halo electron, detector, radiation, photon 191
  • A.S. Fisher, M. Bai, T. Frosio, A. Ratti, J. Smedley, J. Wu
    SLAC, Menlo Park, California, USA
  • I.S. Mostafanezhad, B. Rotter
    Nalu Scientific, LLC, Honolulu, USA
  FELs require a reproducible distribution of the bunch core at the undulator entrance for robust and reliable lasing. However, various mechanisms drive particles from the core to form a beam halo, which can scrape the beampipe of the undulator and damage its magnets. Collimators can trim the halo, but at the 1-MHz repetition rate of SLAC’s LCLS-II superconducting linac, the collimator jaws can be activated and damaged. The Machine Protection System (MPS) can detect excessive radiation and halt the beam, but repeated MPS trips lead to significant downtime. Halo control begins by studying its structure, formation, and evolution, using a sensitive halo monitor. To that end, we are developing a pixellated diamond sensor. Diamond offers a dynamic range of up to 7 orders of magnitude, extending from the edge of the core to the faint halo expected at greater distances. Nalu Scientific has developed fast electronics for high-rate shot-by-shot readout. Initial tests are starting with a prototype 16-pixel sensor at the beam dump of SLAC’s FACET-II test facility. The tests and simulations will guide more elaborate sensor designs.  
poster icon Poster TUP006 [2.602 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP006  
About • Received ※ 07 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 12 September 2023 — Issue date ※ 19 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP011 Geometry Study of an RF-Window for a GHz Transition Radiation Monitor for Longitudinal Bunch Shape Measurements radiation, vacuum, target, FEL 209
  • S. Klaproth, A. Penirschke
    THM, Friedberg, Germany
  • H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • R. Singh
    GSI, Darmstadt, Germany
  Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract no. 05P21RORB2. Joint Project 05P2021 - R&D Accelerator (DIAGNOSE)
GHz transition radiation monitors (GTRs) can be used to measure longitudinal beam profiles even for low ß beams. In comparison to traditional methods e.g., Fast Faraday Cups (FFCs) and Feschenko monitors, GTRs are a non-destructive measurement method and are able to resolve bunch-by-bunch longitudinal profiles at the same time. In our case, we plan to measure the transition radiation outside the beam line through an RF-window with an 8 GHz broad band antenna. At the border of the RF-window the transition radiation is partially reflected propagating in the beam line backwards. In this contribution, we show a study of different geometries to suppress reflections generated at the transition to the RF-window. For higher permittivity the strength of these reflections becomes stronger, simultaneously reducing the measurable signal strength at the antenna. Secondly the RF-window material must be UHV usable and should be durable like Alumina or Peek.
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP011  
About • Received ※ 25 September 2023 — Revised ※ 29 September 2023 — Accepted ※ 30 September 2023 — Issue date ※ 30 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP022 Characterisation of Cherenkov Diffraction Radiation Using Electro-Optical Methods electron, radiation, experiment, laser 226
  • A. Schlögelhofer, T. Lefèvre, S. Mazzoni, E. Senes
    CERN, Meyrin, Switzerland
  • L. Duvillaret
    KAPTEOS, Sainte-Helene-du-Lac, France
  • A. Schlögelhofer
    TU Vienna, Wien, Austria
  The properties of Cherenkov diffraction radiation (ChDR) have been studied extensively during the recent years to be exploited for non-invasive beam diagnostic devices for short bunches. The dependence of charge and the influence of the bunch form factor on the coherent part of the radiated spectrum have been demonstrated and studied in the past. However, the actual field strength of coherent ChDR as well as its study in time domain need further investigation. In this contribution we are using electro-optical techniques to investigate and quantify these parameters. The electro-optical read-out brings the advantage of high bandwidth acquisition and insensitivity to electromagnetic interference, whereas at the same time a large fraction of the acquisition setup can be installed and operated outside of the radiation controlled areas. We will present experimental results from the CLEAR facility at CERN as well as simulations of the peak field of the temporal profile of beam-generated ChDR pulses.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP022  
About • Received ※ 05 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 11 September 2023 — Issue date ※ 13 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP028 Collimator Irradiation Studies at the Advanced Photon Source experiment, photon, storage-ring, radiation 245
  • J.C. Dooling, W. Berg, M. Borland, J.R. Calvey, L. Emery, A.M. Grannan, K.C. Harkay, Y. Lee, R.R. Lindberg, G. Navrotski, V. Sajaev, N. Sereno, J.B. Stevens, Y.P. Sun, K.P. Wootton
    ANL, Lemont, Illinois, USA
  • N.M. Cook
    RadiaSoft LLC, Boulder, Colorado, USA
  • D.W. Lee, S.M. Riedel
    UCSC, Santa Cruz, California, USA
  Funding: Work supported by the U.S. D.O.E.,Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02- 06CH11357.
We present results from a recent collimator irradiation experiment conducted in the Advanced Photon Source (APS) storage ring. This experiment is the third in a series of studies to examine the effects of high-intensity electron beams on potential collimator material for the APS-Upgrade (APS-U). The intent here is to determine if a fan-out kicker can sufficiently reduce e-beam power density to protect horizontal collimators planned for the APS-U storage-ring. The fan-out kicker (FOK) spreads the bunched-beam vertically allowing it to grow in transverse dimensions prior to striking the collimator. In the present experiment, one of the two collimator test pieces is fabricated from oxygen-free copper; the other from 6061-T6 aluminum. As in past studies, diagnostics include turn-by-turn BPMs, a diagnostic image system, fast beam loss monitors, a pin-hole camera, and a current monitor. Post-irradiation analyses employ microscopy and metallurgy. To avoid confusion from multiple strikes, only three beam aborts are carried out on each of the collimator pieces; two with the FOK on and the other with it off. Observed hydrodynamic behavior will be compared with coupled codes.
poster icon Poster TUP028 [3.733 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP028  
About • Received ※ 07 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 25 September 2023 — Issue date ※ 29 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WE3C02 Development of a Precise 4d Emittance Meter Using Differential Slit Image Processing emittance, experiment, electron, background 318
  • B.K. Shin, G. Hahn
    PAL, Pohang, Republic of Korea
  • M. Chung, C.K. Sung
    UNIST, Ulsan, Republic of Korea
  We have developed a highly precise 4D emittance meter for X-Y coupled beams with 4D phase-space (x-x’, y-y’, x-y’, y-x’) which utilizes an L-shaped slit and employs novel analysis techniques. Our approach involves two types of slit-screen image processing to generate pepper-pot-like images with great accuracy. One which we call the "differential slit" method, was developed by our group. This approach involves combining two slit-screen images, one at position x and the other at position x + the size of the slit, to create a differential slit image. The other method we use is the "virtual pepper-pot (VPP)" method, which combines x-slit and y-slit images to produce a hole (x,y) image. By combining that hole images, we are able to take extra x-y’ and y-x’ phase-space. The "differential slit" method is crucial for accurately measuring emittance. Through simulations with 0.1 mm slit width using Geant4, the emittance uncertainties for a 5 nm rad and 0.2 mm size electron beam were 5% and 250% with and without the "differential slit", respectively. In this presentation, we provide a description of the methodology, the design of slit, and the results of the 4D emittance measurements.  
slides icon Slides WE3C02 [4.459 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WE3C02  
About • Received ※ 30 August 2023 — Revised ※ 13 September 2023 — Accepted ※ 26 September 2023 — Issue date ※ 28 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP005 Effect of Incoherent Depth of Field for Bean Halo Measurement with the Coronagraph in SuperKEKB optics, radiation, synchrotron, synchrotron-radiation 335
  • T.M. Mitsuhashi, H. Ikeda, G. Mitsuka
    KEK, Ibaraki, Japan
  The incoherent depth-of-field due to the instantaneous opening angle of dipole SR will reduce the spatial coherence of SR in horizontal direction in the beam size measurement by using interferometry. This reduction of spatial coherence is due to both of apparent change of the beam profile due to field depth and intensity distribution in the aperture. In the case of beam profile measurement by imaging system, observed beam profile will deform and produce a beam tail in asymmetric manner by this effect. This apparent change of beam profile, especially extra beam tail in one side has certain influence for beam halo measurement using the coronagraph, because it has a large dynamic range of 6 order magnitude. Since the magnitude of asymmetric tail is proportional to bending radius, this effect is larger in large high energy physics machine which has a long bending radius. This effect is theoretically studied and compare with coronagraph measurement result of beam halo in the SuperKEKB. As a conclusion, this effect is very small and not observable in the coronagraph measurement at SuperKEKB.  
poster icon Poster WEP005 [0.570 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP005  
About • Received ※ 05 September 2023 — Revised ※ 09 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 21 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP018 Simulation of Oscillating Arm Wire Monitor Mechanics Driven by a Stepper Motor acceleration, damping, proton, HOM 373
  • R. Dölling
    PSI, Villigen PSI, Switzerland
  The present oscillating arm wire monitors at HIPA operate with wire speeds of 0.75 m/s. Based on basic dynamic simulations of mechanics and motor, we discuss possible variants of this design using stepper motors in open loop control. The results suggest that 4 m/s can be reached with sufficient position resolution, when using a predefined step sequence customized to the mechanics. This speed should be sufficient to measure the full proton beam current in the injection line.  
poster icon Poster WEP018 [3.110 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP018  
About • Received ※ 06 September 2023 — Accepted ※ 10 September 2023 — Issue date ※ 01 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP019 Study of Single Wire Scanner Monitor for FETS-FFA Test Ring proton, scattering, linac, injection 377
  • E. Yamakawa, S. Machida, A. Pertica, D.W. Posthuma de Boer
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • Y. Ishi
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • A.P. Letchford
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • T. Uesugi
    Kyoto University, Institute for Integrated Radiation and Nuclear Science, Osaka, Japan
  To confirm the use of Fixed Field Alternating gradient accelerator (FFA) as a high power pulsed neutron spallation source, a prototype called FETS-FFA is studied at Rutherford Laboratory (RAL). A single Wire Scanner Monitor (WSM) is planned to be used to measure a beam position and a beam profile in the ring. One of the concerns of this monitor is the thermal damage on the Carbon Nano Tube (CNT) wire due to high energy deposition of low energy proton beam in FETS-FFA (3 - 12 MeV). Furthermore, to measure a beam profile during beam acceleration in the ring, a diameter of CNT wire needs to be smaller than the orbit displacements in turns. To confirm whether a single WSM is suitable for FETS-FFA ring, two different beam tests were performed at RAL and at the Institute for Integrated Radiation and Nuclear Science, Kyoto University (KURNS). Both measurements demonstrated that the single WSM is applicable for FETS-FFA ring if the diameter of CNT is smaller than the orbit separation in turns. In this paper, the detail of the design study of the single WSM as well as the performance tests are presented.  
poster icon Poster WEP019 [8.196 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP019  
About • Received ※ 05 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 25 September 2023 — Issue date ※ 01 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP024 A Simulation of the Photoionization of H Together With the Subsequent Tracking of the Liberated Electrons laser, electron, linac, MEBT 400
  • R.M. Thurman-Keup, M. El Baz, V.E. Scarpine
    Fermilab, Batavia, Illinois, USA
  Funding: This work was produced by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The Proton Improvement Plan - II (PIP-II) is a new linear accelerator (LINAC) complex being built at Fermilab. It is based on superconducting radiofrequency cavities and will accelerate H ions to 800 MeV kinetic energy before injection into the existing Booster ring. Measurements of the profile of the beam along the LINAC must be done by non-intercepting methods due to the superconducting cavities. The method chosen is photoionization of a small number of H by a focused infrared laser, aka laserwire. The number of ionized electrons is measured as a function of laser position within the H beam. To aid in the design of the collection mechanism, a simulation was written in MATLAB with input from the commercial electromagnetic simulation, CST. This simulation calculates the number and positions of the liberated electrons and tracks them through the magnetic collection and H beam fields to the collection point. Results from this simulation for various points along the LINAC will be shown.
poster icon Poster WEP024 [7.451 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP024  
About • Received ※ 08 September 2023 — Revised ※ 10 September 2023 — Accepted ※ 12 September 2023 — Issue date ※ 30 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP027 Status of Gas Sheet Monitor for Profile Measurements at FRIB photon, optics, heavy-ion, vacuum 410
  • A. Lokey, S.M. Lidia
    FRIB, East Lansing, Michigan, USA
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
We report on the status of work on a non-invasive profile monitor under development for use at the Facility for Rare Isotope Beams (FRIB), a heavy-ion LINAC which produces high-intensity, multi-charge state beams. The measurement will be made by collecting photons generated at the interaction point of the beam and a collimated molecular gas curtain. These photons will be collected with an intensified camera system, generating a two dimensional image and allowing for measurements of profile, beam halo, and other properties more prevalent at specific locations of interest, such as charge state spread after folding segment bends. Included will be ongoing design specifications, simulation results, and discussion of measurement techniques for acquiring signal from the device.
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP027  
About • Received ※ 07 September 2023 — Revised ※ 10 September 2023 — Accepted ※ 12 September 2023 — Issue date ※ 14 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP034 Effect of Longitudinal Beam-Coupling Impedance on the Schottky Spectrum of Bunched Beams synchrotron, impedance, coupling, proton 428
  • C. Lannoy, D. Alves, K. Łasocha, N. Mounet
    CERN, Meyrin, Switzerland
  • C. Lannoy, T. Pieloni
    EPFL, Lausanne, Switzerland
  Schottky spectra can be strongly affected by collective effects, in particular those arising from beam-coupling impedance when a large number of bunch charges are involved. In such conditions, the direct interpretation of the measured spectra becomes difficult, which prevents the extraction of beam and machine parameters in the same way as is usually done for lower bunch charges. Since no theory is yet directly applicable to predict the impact of impedance on such spectra, we use here time-domain, macro-particle simulations and apply a semi-analytical method to compute the Schottky spectrum for various machine and beam conditions, such as the ones found at the Large Hadron Collider. A simple longitudinal resonator-like impedance model is introduced in the simulations and its effect studied in different configurations, allowing preliminary interpretations of the impact of longitudinal impedance on Schottky spectra.  
poster icon Poster WEP034 [1.237 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP034  
About • Received ※ 05 September 2023 — Revised ※ 10 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 22 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP035 Statistical Properties of Schottky Spectra synchrotron, betatron, dipole, diagnostics 433
  • C. Lannoy, D. Alves, K. Łasocha, N. Mounet
    CERN, Meyrin, Switzerland
  • C. Lannoy, T. Pieloni
    EPFL, Lausanne, Switzerland
  Schottky signals are used for non-invasive beam diagnostics as they contain information on various beam and machine parameters. The instantaneous Schottky signal is, however, only a single realisation of a random process, implicitly depending on the discrete distribution of synchrotron and betatron amplitudes and phases among the particles. To estimate the expected value of the Schottky power spectrum, and reveal the inner structure of the Bessel satellites described by the theory, the averaging of instantaneous Schottky spectra is required. This study describes this procedure quantitatively by analysing the statistical properties of the Schottky signals, including the expected value and variance of Schottky power spectra. Furthermore, we investigate how these quantities evolve with the number of particles in the bunch, the observed harmonic of the revolution frequency, the distribution of synchrotron oscillation amplitudes, and the bunch profile. The theoretical findings are compared against macro-particle simulations as well as Monte Carlo computations.  
poster icon Poster WEP035 [3.908 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP035  
About • Received ※ 05 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 29 September 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)