JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
@inproceedings{wang:ibic2023-mop004, author = {Q. Wang and Q.Y. Dong and L.T. Huang and Q. Luo}, title = {{Design and Study of Cavity Quadrupole Moment and Energy Spread Monitor}}, % booktitle = {Proc. IBIC'23}, booktitle = {Proc. 12th Int. Beam Instrum. Conf. (IBIC'23)}, eventdate = {2023-09-10/2023-09-14}, pages = {37--40}, paper = {MOP004}, language = {english}, keywords = {cavity, quadrupole, simulation, framework, linac}, venue = {Saskatoon, Canada}, series = {International Beam Instrumentation Conference}, number = {12}, publisher = {JACoW Publishing, Geneva, Switzerland}, month = {12}, year = {2023}, issn = {2673-5350}, isbn = {978-3-95450-236-3}, doi = {10.18429/JACoW-IBIC2023-MOP004}, url = {https://jacow.org/ibic2023/papers/mop004.pdf}, abstract = {{A nondestructive method to measure beam energy spread using the quadrupole modes within a microwave cavity is proposed. Compared with a button beam position monitor (BBPM) or a stripline beam position monitor (SBPM), the cavity monitor is a narrow band pickup and therefore has better signal-to-noise ratio (SNR) and resolution. In this study, a rectangular cavity monitor is designed. TM220 mode operating at 4.76 GHz in the cavity reflects the quadrupole moment of the beam. The cavity plans to be installed behind a bending magnet in Dalian Coherent Light Source (DCLS), an extreme ultraviolet FEL facility. In this position, the beam has a larger dispersion, which is beneficial to measure the energy spread. A quadrupole magnet, a fluorescent screen, and a SBPM with eight electrodes is installed near the cavity for calibration and comparison. The systematic framework and simulation results are also discussed in this paper.}}, }