Keyword: target
Paper Title Other Keywords Page
MOP002 MiniBEE - Minibeam Beamline for Preclinical Experiments proton, radiation, cyclotron, simulation 34
  • J. Reindl, G. Datzmann, G. Dollinger, J. Neubauer, A. Rousseti
    Universität der Bundeswehr Muenchen, Neubiberg, Germany
  • J. Bundesmann, A. Denker, A. Dittwald, G. Kourkafas
    HZB, Berlin, Germany
  • G. Datzmann
    Datzmann Interact & Innovate GmbH, München, Germany
  • A. Denker
    BHT, Berlin, Germany
  Spatial fractionated radiotherapy using protons, so-called proton minibeam radiotherapy (pMBT) was developed for better sparing of normal tissue in the entrance channel of radiation. Progressing towards clinical use, pMBT should overcome current technical and biomedical limitations. This work discusses a preclinical pMBT facility, currently built at the 68.5MeV cyclotron at the Helmholtz Zentrum Berlin. The goal is to irradiate small animals using focused pMBT with a σ of 50µm, a high peak-to-valley dose ratio at center-to-center distance as small as 1mm and beam current of 1nA. A first degrader defines the maximum energy of the beam. Dipole magnets and quadrupole triplets transport the beam to the treatment room while multiple slits properly form the transverse beam profiles. A high magnetic field gradient triplet lens forms the minibeams in front of the target station and, scanning magnets are used for a raster scan at the target. An additional degrader, positioned close before the focusing spot and the target, further reduces the energy, forming a spread-out Bragg peak. A small animal radiation research platform will be used for imaging and positioning of the target.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP002  
About • Received ※ 09 September 2023 — Revised ※ 14 September 2023 — Accepted ※ 25 September 2023 — Issue date ※ 29 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP018 Beam-diagnostic and T0 System for the mCBM and CBM Experiments at GSI and FAIR detector, experiment, vacuum, monitoring 66
  • A. Rost, A. Senger
    FAIR, Darmstadt, Germany
  • T. Galatyuk, M. Kis, J. Pietraszko, J. Thaufelder, F. Ulrich-Pur
    GSI, Darmstadt, Germany
  • T. Galatyuk, V. Kedych, W. Krüger
    TU Darmstadt, Darmstadt, Germany
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871072.
The Compressed Baryonic Matter (CBM) experiment at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt requires a highly accurate beam monitoring and time-zero (T0) system. This system needs to meet the requirements of the CBM time-of-flight (ToF) measurement system for both proton and heavy ion beams, while also serving as part of the fast beam abort system. To achieve these goals, a detector based on chemical vapor deposition (CVD) diamond technology has been proposed. In addition, new developments using Low Gain Avalanche Detectors (LGADs) are currently under evaluation. This contribution presents the current development status of the beam detector concept for the CBM experiment.
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP018  
About • Received ※ 06 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 30 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP033 1L Target Harp Diagnostic Display Tool operation, diagnostics, neutron, status 99
  • A.D. Walker, E.L. Kerstiens
    LANL, Los Alamos, New Mexico, USA
  The Los Alamos Neutron Science Center (LANSCE) completed upgrades to its 1L Target Facility, which included installing the new Mark IV target assembly. This added a third tungsten target located upstream of the other two targets. Prior to Mark IV, beam centering on target was achieved by using thermocouples mounted to the quadrants and center of the upper target coolant chamber. It is slightly offset from center of the old upper target and it shadows several of the thermocouples previously used to center beam on target. This required adjustments to the diagnostic tools utilized to monitor position of the H beam that is being delivered to the 1L target. The original display included the thermocouple readouts and displayed a visual beam profile and position taken from an upstream harp. With some of the thermocouples now being shadowed, an image overlay was added to show where the harp¿s measured beam position is relative to both the upper and middle targets. This gives the beam operations team an additional level of awareness when it comes to thermocouple temperatures, beam steering, and beam tuning. Details of the display tool and its associated upgrades are presented.
LANL Report #: LA-UR-23-25004
poster icon Poster MOP033 [0.825 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP033  
About • Received ※ 05 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 20 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP038 Development of an Active Beam-Stabilization System for Electrofission Experiments at the S-Dalinac electron, controls, linac, experiment 111
  • D. Schneider, M. Arnold, U. Bonnes, A. Brauch, M. Dutine, R. Grewe, L.E. Jürgensen, N. Pietralla, F. Schließmann, G. Steinhilber
    TU Darmstadt, Darmstadt, Germany
  Funding: Work supported by DFG (GRK 2128), BMBF (05H21RDRB1), the State of Hesse within the Research Cluster ELEMENTS (Project ID 500/10.006) and the LOEWE Research Group Nuclear Photonics.
The r-process fission cycle terminates the natural synthesis of heavy elements in binary neutron-star mergers. Fission processes of transuranium nuclides will be studied in electrofission reactions at the S-DALINAC*. Due to the minuscule fissile target, the experimental setup requires an active electron-beam-stabilization system with high accuracy and a beam position resolution in the submillimeter range. In this contribution, requirements and concepts of this system regarding beam-diagnostic elements, feedback control and readout electronics are presented. The usage of a beam position monitor cavity and optical transition radiation targets to monitor the required beam parameters will be discussed in detail. Additionally, various measurements performed at the S-DALINAC to assess requirements and limits for the beam-stabilization system will be presented. Finally, the option of using advanced machine learning methods such as neural networks and agent-based reinforcement learning will be discussed.
*N. Pietralla, Nuclear Physics News, Vol. 28, No. 2, 4 (2018)
poster icon Poster MOP038 [1.526 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP038  
About • Received ※ 06 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 23 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP041 Modified Fast Orbit Feedback Controller for Disturbance Attenuation in Long Straights for Diamond-II controls, simulation, electron, feedback 119
  • S. Banerjee, M.G. Abbott, L. Bobb, I. Kempf
    DLS, Harwell, United Kingdom
  • I. Kempf
    University of Oxford, Oxford, United Kingdom
  At Diamond Light Source, the fast orbit feedback (FOFB) uses one array of correctors and the controller is designed using the internal model control (IMC) structure. The Diamond-II upgrade will introduce an additional array of fast correctors and a new controller that is designed using the generalised modal decomposition, increasing the overall closed-loop bandwidth from 140 Hz to 1 kHz. Although simulation results have shown that the resulting beam displacement is within specification in all straights, they have also shown that the performance on long straights is limited, particularly in the vertical plane. In this paper, the controller is tuned in order to increase the FOFB performance in long straights by introducing a mode-by-mode regularisation parameter. The performance of the controller beyond 1 kHz is assessed using new disturbance data and a new measurement noise model, showing that the Diamond-II performance criteria are met, even in the presence of measurement noise.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP041  
About • Received ※ 07 September 2023 — Revised ※ 09 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 16 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TU2I02 First Direct Measurement of Electron and Positron Bunch Characteristics during Positron Capture Process at the Positron Source of the SuperKEKB B-Factory positron, operation, electron, factory 146
  • T. Suwada
    KEK, Ibaraki, Japan
  Electron (e-) and positron (e+) bunch characteristics were directly measured for the first time using wideband beam monitors (WBMs) and a detection system at the e+ source of the SuperKEKB B-factory. Both secondarily-generated e- and e+ bunches after the e±production target were clearly identified in their dynamical capture process at locations of the WBMs under two-bunch acceleration scheme. Not only the longitudinal but also transverse bunch characteristics, the time intervals between the e- and e+ bunches, the bunch lengths, transverse bunch positions, and bunch charges were simultaneously separately measured for each bunch as functions of the capture phase to investigate their dynamical capture process. The results show that quite symmetric dynamical behaviors for the e- and e+ bunch characteristics were clearly observed. The new WBMs open up a new window for direct measurements of both the e- and e+ bunches during their dynamical capture process and in the optimization procedure of the e+ bunch intensity in multidimensional parameter spaces at any e+ sources. The historical backgrounds for introducing and implementing the new WBMs are also described in this report.  
slides icon Slides TU2I02 [2.925 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TU2I02  
About • Received ※ 07 August 2023 — Revised ※ 08 September 2023 — Accepted ※ 12 September 2023 — Issue date ※ 22 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP004 Detector Response Studies of the ESS Ionization Chamber detector, linac, neutron, simulation 183
  • I. Dolenc Kittelmann, V. Grishin
    ESS, Lund, Sweden
  • P. Boutachkov
    GSI, Darmstadt, Germany
  • E. Effinger, A.T. Lernevall, W. Viganò, C. Zamantzas
    CERN, Meyrin, Switzerland
  The European Spallation Source (ESS), currently under construction in Lund, Sweden, will be a pulsed neutron source based on a proton linac. The ESS linac is designed to deliver a 2GeV beam with peak current of 62.5mA at 14 Hz to a rotating tungsten target for neutron production. One of the most critical elements for protection of an accelerator is a Beam Loss Monitoring (BLM) system. The system is designed to protect the accelerator from beam-induced damage and unnecessary activation of the components. The main ESS BLM system is based on ionization chamber (IC) detectors. The detector was originally designed for the LHC at CERN resulting in production of 4250 monitors in 2006-2008. In 2014-2017 a new production of 830 detectors with a modified design was carried out to replenish spares for LHC and make a new series for ESS and GSI. This contribution focuses on the results from a measurement campaigns performed at the HRM (High-Radiation to Materials) facility at CERN, where detector response of the ESS type IC has been studied. The results may be of interest for other facilities, that are using existing or plan to use new generation of LHC type IC monitors as BLM detectors.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP004  
About • Received ※ 04 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 16 September 2023 — Issue date ※ 21 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP011 Geometry Study of an RF-Window for a GHz Transition Radiation Monitor for Longitudinal Bunch Shape Measurements radiation, vacuum, simulation, FEL 209
  • S. Klaproth, A. Penirschke
    THM, Friedberg, Germany
  • H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • R. Singh
    GSI, Darmstadt, Germany
  Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract no. 05P21RORB2. Joint Project 05P2021 - R&D Accelerator (DIAGNOSE)
GHz transition radiation monitors (GTRs) can be used to measure longitudinal beam profiles even for low ß beams. In comparison to traditional methods e.g., Fast Faraday Cups (FFCs) and Feschenko monitors, GTRs are a non-destructive measurement method and are able to resolve bunch-by-bunch longitudinal profiles at the same time. In our case, we plan to measure the transition radiation outside the beam line through an RF-window with an 8 GHz broad band antenna. At the border of the RF-window the transition radiation is partially reflected propagating in the beam line backwards. In this contribution, we show a study of different geometries to suppress reflections generated at the transition to the RF-window. For higher permittivity the strength of these reflections becomes stronger, simultaneously reducing the measurable signal strength at the antenna. Secondly the RF-window material must be UHV usable and should be durable like Alumina or Peek.
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP011  
About • Received ※ 25 September 2023 — Revised ※ 29 September 2023 — Accepted ※ 30 September 2023 — Issue date ※ 30 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP023 Application of a Camera Array for the Upgrade of the AWAKE Spectrometer electron, proton, plasma, emittance 230
  • E. Senes, S. Mazzoni, M. Turner, G. Zevi Della Porta
    CERN, Meyrin, Switzerland
  • D.A. Cooke, F.E. Pannell, M. Wing
    UCL, London, United Kingdom
  The first run of the AWAKE experiment successfully demonstrated the acceleration of an electron beam in the plasma wakefields of a relativistic proton beam. The planned second run will focus on the control of the emittance  of accelerated electrons, requiring an upgrade of the  existing spectrometer. Preliminary measurements showed that this might be achieved by improving the resolution of the scintillator and with a new design of the optical system. This contribution discusses the application of a digital camera array in close proximity of the spectrometer scintillator, to enable the accelerated electron beam emittance measurement.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP023  
About • Received ※ 05 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 24 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP006 Development of Pepper-pot Emittance Monitor for High-intensity Ion Beam Accelerated by RIKEN AVF Cyclotron emittance, cyclotron, radiation, beam-transport 339
  • Y. Kotaka, N. Imai, K. Kamakura, Y. Sakemi, H. Yamaguchi
    CNS, Saitama, Japan
  • K. Hatanaka
    RCNP, Osaka, Japan
  • J. Ohnishi
    RIKEN Nishina Center, Wako, Japan
  At the Center for Nuclear Study of the University of Tokyo, the measurement of Electric Dipole Moment of Francium (Fr) is underway with the world highest precision. Fr is generated by nuclear fusion reaction by irradiating gold with oxygen ion beam accelerated by RIKEN AVF Cyclotron. The required beam intensity is 18 eµA or more. However, the average beam transport efficiency drops to be around 66 % as the beam intensity exceeds 10 eµA. To solve the problem, a pepper-pot emittance monitor (PEM) for high-intensity beams has been developed. Referencing the PEM used for the injection beams of AVF Cyclotron, we have developed three additional items. The first is reducing the radiation damage to a camera, which is placed away from the beamline. The distance between the camera and PEM is 2.2 m, and the average image position accuracy of 0.15 mm is achieved. The second is the angular accuracy suitable for the accelerated beam. The required angular accuracy is estimated to be less than 0.3 mrad. A beam test for the first and second items is planned. The third is a beam shutter system to prevent PEM from heating due to beam. The measurement time by the system reaches 0.27 seconds now.  
poster icon Poster WEP006 [2.250 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP006  
About • Received ※ 06 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 29 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP007 Beam Profile Measurement using Helium Gas Light Emission and BEPM for Superheavy Element Search Experiment controls, experiment, optics, quadrupole 343
  • T. Watanabe, O. Kamigaito, T. Nishi, A. Uchiyama
    RIKEN Nishina Center, Wako, Japan
  • T. Adachi, B. Brionnet, K.M. Morimoto
    RIKEN, Saitama, Japan
  • A. Kamoshida
    National Instruments Japan Corporation, MInato-ku, Tokyo, Japan
  • K. Kaneko, R. Koyama
    SHI Accelerator Service Ltd., Tokyo, Japan
  The newly constructed superconducting linear accelerator (SRILAC) is now in operation with the aim of discovering new superheavy elements and advancing the production of medical radiation isotopes. Because it is crucial to extend the durability of the expensive Cm target for as long as possible, these experiments require the accelerated V beam to be sufficiently widened. To this end, a helium gas light emission monitor (HeLM) has been introduced to measure the beam profile. Because He gas flows within the target chamber, by capturing the light emitted from He gas with a CCD camera, the beam profile can be obtained nondestructively and continuously. These measurements are handled through programming in LabVIEW, with analyzed data integrated into an EPICS control system. A method to estimate the beam envelope has been recently developed by leveraging the measured quadrupole moments with beam energy position monitors (BEPMs), and incorporating calculations of the transfer matrix. The synergistic use of HeLM and BEPM plays a useful role in accurately controlling the beam size at the Cm target.  
poster icon Poster WEP007 [4.168 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP007  
About • Received ※ 04 September 2023 — Revised ※ 09 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 22 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP022 Target Multiwire for the Fermilab Booster Neutrino Beamline electron, radiation, electronics, proton 392
  • R.M. Prokop
    Fermilab, Batavia, Illinois, USA
  Funding: This work was supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359.
The Booster Neutrino Beamline experiment requested a new secondary electron emission multiwire profile monitor installation. The device had to be durable in high radiation conditions and mounted within a large 10 foot airtight steel fixture for installation near the beam target. Previous iterations of multiwire suffered radiation damage to both the connectors and wires. To ensure accurate horizontal and vertical beam profile measurements, an updated design was proposed, designed, and constructed. The new BNB multiwire utilizes 3 mil diameter gold-plated tungsten sense wires soldered to vertical and horizontal Alumina-96 ceramic planes, 50 wires per plane. Radiation hard Kapton insulated 30 gauge wires carry the output signals. Profiles are readout through charge integrator scanner electronics. This paper will detail the design and functionality of the BNB target multiwire and present relevant beam profile data.
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP022  
About • Received ※ 07 September 2023 — Revised ※ 10 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 16 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP023 Progress on an Electron Beam Profile Monitor at the Fermilab Main Injector electron, proton, gun, experiment 395
  • R.M. Thurman-Keup, T.V. Folan, M.W. Mwaniki, S.G. Sas-Pawlik
    Fermilab, Batavia, Illinois, USA
  Funding: This work was produced by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The current program at Fermilab involves the construction of a new superconducting linear accelerator (LINAC) to replace the existing warm version. The new LINAC, together with other planned improvements, is in support of proton beam intensities in the Main Injector (MI) that will exceed 2 MW. Measuring the transverse profiles of these high intensity beams in a ring requires non-invasive techniques. The MI uses ionization profile monitors as its only profile system. An alternative technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. This type of device was installed in MI and initial studies of it have been previously presented. This paper will present the status and recent studies of the device utilizing different techniques.
poster icon Poster WEP023 [3.243 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP023  
About • Received ※ 08 September 2023 — Revised ※ 09 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 14 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)