Keyword: diagnostics
Paper Title Other Keywords Page
MOP007 Experimental Verification of the Coherent Diffraction Radiation Measurement Method for Longitudinal Electron Beam Characteristics radiation, electron, experiment, FEL 41
 
  • R. Panaś, A.I. Wawrzyniak
    NSRC SOLARIS, Kraków, Poland
  • A. Curcio
    LNF-INFN, Frascati, Italy
  • K. Łasocha
    CERN, Meyrin, Switzerland
 
  This paper presents a natural extension of prior theoretical investigations regarding the utilization of coherent diffraction radiation for assessing longitudinal characteristics of electron beams at Solaris. The study focuses on the measurement results obtained at the linac injector of the Solaris synchrotron and their analysis through a theoretical model. The findings are compared with previous estimates of the electron beam longitudinal profile. This paper contributes to the future diagnostics at the first Polish free electron laser (PolFEL) project, where it will be used for the optimization of particle accelerator performance.  
poster icon Poster MOP007 [20.060 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP007  
About • Received ※ 02 August 2023 — Revised ※ 09 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 26 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP008 Consideration of Beam Instrumentation for SOLARIS Linac Upgrade linac, lattice, injection, emittance 45
 
  • A.I. Wawrzyniak, J.B. Biernat, R. Panaś, J.J. Wiechecki, M.T. Ünal
    NSRC SOLARIS, Kraków, Poland
  • A. Curcio
    LNF-INFN, Frascati, Italy
 
  SOLARIS linac currently operates at 540 MeV and is used as an injector to the storage ring, where after the accumulation the energy is ramped up to 1.5 GeV via two active RF cavities. Top-up injection would be of extreme benefits for user operation, therefore a new 1.5 GeV linac is being designed. The idea is to replace the current machine without infrastructural interventions in terms of tunnel expansion. Performed studies demonstrate that the best solution is provided by a Hybrid S-band/C-band LINAC. One of the main goals is to achieve bunch compression below the picosecond level and low-emittance beams for a future short-pulse facility or a Free Electron Laser. Within this presentation the results of performed simulations will be presented together with the concept of different diagnostics as BPMs, current transformers, YAG screens, coherent diffraction radiation monitor distribution.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP008  
About • Received ※ 08 September 2023 — Revised ※ 09 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 27 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP010 Diagnostics for a High Emittance and High Energy Spread Positron Source simulation, pick-up, positron, experiment 54
 
  • N. Vallis, P. Craievich, R.F. Fortunati, R. Ischebeck, E. Ismaili, P.N. Juranič, F. Marcellini, G.L. Orlandi, M. Schaer, R. Zennaro, M. Zykova
    PSI, Villigen PSI, Switzerland
 
  Funding: This work was done under the auspices of CHART (chart.ch)
This paper is an overview of a diagnostics setup for highly spread e⁺e⁻ beams, to be installed at the PSI Positron Production (P3 or P-cubed) experiment. To be hosted at the SwissFEL facility (PSI, Switzerland) in 2026, P3 is e+ source demonstrator designed to generate, capture, separate and detect nano-Coulombs of secondary e+ and e- bunches, in spite of their extreme tranverse emittance and energy spread. The experiment will employ an arrangement of broadband pick-ups (BBPs) to detect simultaneously the time structure of secondary e⁺e⁻ bunches. A spectrometer will follow the BBPs and deflect the e+ and e- onto two unconventional faraday cups that will measure their charge. In addition, the energy spectrum of e+ and e- distribution will be reconstructed through scintillating fibers.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP010  
About • Received ※ 05 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 25 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP013 Expansion of the MTCA Based Direct Sampling LLRF at MedAustron for Hadron Synchrotron Applications synchrotron, pick-up, injection, hadron 63
 
  • M. Wolf, M. Cerv, C. Kurfürst, S. Myalski, M. Repovž, C. Schmitzer
    EBG MedAustron, Wr. Neustadt, Austria
  • A. Bardorfer, B. Baričevič, P. Leban, P. Paglovec, M. Škabar
    I-Tech, Solkan, Slovenia
 
  The MedAustron Ion Therapy Centre is a synchrotron-based particle therapy facility located in Lower Austria, which delivers proton and carbon ion beams for cancer treatments. Currently the facility treats over 400 patients per year and is expected to double this number in the future. Six years since the start of clinical operation, MedAustron is experiencing end-of-life issues concerning the digital Low Level RF components in the injector and the synchrotron. Replacements for these applications are under development and the chosen hardware is suitable to also update multiple beam diagnostic devices in the facility. Main targets for updates are the Schottky monitors, which were never properly integrated into the MedAustron Control system and the position pickup measurement system, which currently does not support turn by turn measurements. Comparison measurements with other state of the art diagnostic devices are ongoing to demonstrate the capabilities of the generic hardware. Furthermore, these measurements should show the increased usability and diagnostic potential compared to the legacy devices.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP013  
About • Received ※ 07 September 2023 — Revised ※ 09 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 16 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP033 1L Target Harp Diagnostic Display Tool target, operation, neutron, status 99
 
  • A.D. Walker, E.L. Kerstiens
    LANL, Los Alamos, New Mexico, USA
 
  The Los Alamos Neutron Science Center (LANSCE) completed upgrades to its 1L Target Facility, which included installing the new Mark IV target assembly. This added a third tungsten target located upstream of the other two targets. Prior to Mark IV, beam centering on target was achieved by using thermocouples mounted to the quadrants and center of the upper target coolant chamber. It is slightly offset from center of the old upper target and it shadows several of the thermocouples previously used to center beam on target. This required adjustments to the diagnostic tools utilized to monitor position of the H beam that is being delivered to the 1L target. The original display included the thermocouple readouts and displayed a visual beam profile and position taken from an upstream harp. With some of the thermocouples now being shadowed, an image overlay was added to show where the harp¿s measured beam position is relative to both the upper and middle targets. This gives the beam operations team an additional level of awareness when it comes to thermocouple temperatures, beam steering, and beam tuning. Details of the display tool and its associated upgrades are presented.
LANL Report #: LA-UR-23-25004
 
poster icon Poster MOP033 [0.825 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP033  
About • Received ※ 05 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 20 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP007 Use of the ISAC-II Flight Time Monitors toward Automated Tuning ISAC, linac, cavity, laser 195
 
  • S. Kiy, P.M. Jung, T. Planche, O. Shelbaya, V.V. Verzilov
    TRIUMF, Vancouver, Canada
 
  A time-of-flight measurement system has been in use at ISAC-II since 2006 for the phasing of cavities and accurate ion beam velocity measurements across the nuclear chart. This system is heavily relied upon as the primary energy-time domain diagnostic downstream of the ISAC-II linac. Ongoing High Level Applications (HLA) development at TRIUMF has enabled the use of methods that are being applied to these measurements - both for processing and automation of data acquisition. An update will be provided on operational experience with the system over the past 10 years including its recent re-calibration and error analysis. A brief summary of the current HLA framework will be given, including a database for beam measurements and the ability to carry out sequential measurement processes. Finally, the way in which these developments enable beam-based calibration of cavity parameters and a shift to model-based tuning methods is discussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP007  
About • Received ※ 29 August 2023 — Revised ※ 12 September 2023 — Accepted ※ 15 September 2023 — Issue date ※ 30 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP035 Multi-Tile Zinc-Oxide-Based Radiation-Hard Fast Scintillation Counter for Relativistic Heavy-Ion Beam Diagnostics: Prototype Design and Test detector, heavy-ion, radiation, GUI 263
 
  • M. Saifulin, P. Boutachkov, C. Trautmann, B. Walasek-Höhne
    GSI, Darmstadt, Germany
  • E.I. Gorokhova
    GOI, St Petersburg, Russia
  • P. Rodnyi, I.D. Venevtsev
    SPbPU, St. Petersburg, Russia
  • C. Trautmann
    TU Darmstadt, Darmstadt, Germany
 
  Funding: DLR funded this work within the ERA. Net RUS Plus Project RUSST2017-051.
This contribution summarizes the design and performance test of a prototype radiation-hard fast scintillation detector based on the indium-doped zinc oxide ceramic scintillator, ZnO(In). The prototype detector has been developed for use as a beam diagnostics tool for high-energy beam lines of the SIS18 synchrotron at the GSI Helmholtz Center for Heavy Ion Research GmbH. The new detector consists of multiple ZnO(In) scintillating ceramics tiles stacked on the front and back sides of a borosilicate light guide. The performance of the detector was tested in comparison to a standard plastic scintillation detector with 300 MeV/u energy 40Ar, 197Au, 208Pb, and 238U ion beams. The investigated prototype exhibits 100% counting efficiency and radiation hardness of a few orders of magnitude higher than the standard plastic scintillation counter. Therefore, it provides an improved beam diagnostics tool for relativistic heavy-ion beam measurements.
* doi:10.18429/JACoW-IBIC2019-MOPP005
** doi:10.18429/JACoW-IBIC2022-TUP29
*** doi:10.18429/JACoW-IBIC2022-WE3I1
 
poster icon Poster TUP035 [16.714 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP035  
About • Received ※ 13 July 2023 — Accepted ※ 12 September 2023 — Issue date ※ 15 September 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP045 Real Time Momentum Spread Measurement of the CERN Antiproton Decelerator Beam operation, real-time, hardware, software 293
 
  • P. Freyermuth, B. Dupuy, D. Gamba
    CERN, Meyrin, Switzerland
 
  Constant optimisation and diagnostics of the cooling processes in the CERN antiproton decelerator (AD) relies on a de-bunched beam momentum spread real time measurement. This article will describe the renovation of the acquisition chain of the longitudinal Schottky diagnostics in the AD, using standard CERN hardware and software to maximize reliability, ease maintenance, and meet the requirements for standard operational tools. The whole chain, from the pick-up to the operation software applications will be described with emphasis on the implementation of the data processing running on the front-end computer. Limitations will also be discussed and outlook for further development given.  
poster icon Poster TUP045 [21.199 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP045  
About • Received ※ 05 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 27 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP016 Beamline for Time Domain Photon Diagnostics at the Advanced Photon Source Upgrade photon, synchrotron, synchrotron-radiation, radiation 363
 
  • K.P. Wootton, W.X. Cheng, G. Decker, N. Sereno, F. Westferro
    ANL, Lemont, Illinois, USA
 
  Funding: This research used resources of the Advanced Photon Source, operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Time domain photon diagnostics are proposed for electron beam characterisation and operation of the Advanced Photon Source Upgrade storage ring. In the present work, we present updated status on the time-domain X-ray and visible photon diagnostic beamline for the Advanced Photon Source Upgrade. We outline design influences leading to the proposed beamline layout, in particular long-term maintenance and commonality with other beamlines at the Advanced Photon Source.
 
poster icon Poster WEP016 [0.812 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP016  
About • Received ※ 10 August 2023 — Revised ※ 08 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 26 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP020 Performance Evaluation of GAGG+ and Tungsten Carbide Blades in an X-ray Pinhole Camera photon, synchrotron, synchrotron-radiation, radiation 382
 
  • S.B. Burholt, L. Bobb, N. Vitoratou
    DLS, Harwell, United Kingdom
 
  At Diamond Light Source two X-ray pinhole cameras are used to measure the transverse profile of the 3 GeV electron beam. The current pinhole assembly is formed using tungsten blades with chemically etched shims to produce a 25 µm x 25 µm aperture and the imager incorporates a 0.2 mm LuAG:Ce scintillator. Tungsten carbide is a machinable high-Z material which at millimetre thicknesses is opaque to X-rays. With a slight change in pinhole design, similar to that already in place at the ESRF, tungsten carbide blades could offer a well-controlled aperture size for the pinhole camera with simpler assembly. Further to this, improvements to the photon yield of scintillators mean that the new scintillator GAGG+ has an almost two fold increase in yield compared to the current LuAG: Ce scintillator. An evaluation of the tungsten carbide blades and GAGG+ scintillator is presented.  
poster icon Poster WEP020 [0.468 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP020  
About • Received ※ 07 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 24 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP030 First Results for a 50 MeV Beam Induced Fluorescence Monitor for Beam Profile Measurements experiment, neutron, vacuum, operation 418
 
  • G.B. Rosenthal, J.I. Anderson, A. Cao, E. Cramer, T. Gordon, K. Kuhn, O.O. Ledezma Vazquez, J. Lopez, S. Lynam, J.B. Ringuette, L. Szeto, J. Zhou
    Nusano, Valencia, CA, USA
  • E.F. Dorman, R.C. Emery, B. Smith
    University of Washington Medical Center, Seattle, Washington, USA
 
  Nusano is developing a 50 MeV alpha (4He++) particle accelerator*, primarily to produce medical radionuclides. The accelerator produces an average current of 3 mAe with 20 mAe average macro pulse current. This results in an average beam power of 75 kW, and an average beam power within the macro pulse of 500 kW. The beam profile at the exit of the DTL is approximately gaussian with a diameter (FWHM) of about 3 mm. Designing diagnostics for this beam is challenging, as any diagnostics that intercept beam will receive a very high heat load. A BIFM (Beam Induced Fluorescence Monitor) is being developed to measure beam profiles. Nitrogen gas is leaked into the beamline. Excitation of the nitrogen by beam particles is captured using an image intensifier. The signal generated is directly proportional to the beam current. A prototype system has been constructed and tested on a lower intensity alpha beam. First results indicate we can measure beam profile to a 100 µm accuracy. Production system is currently being designed.
* The Nusano accelerator can also accelerate 2H+, 3He++, 6Li3+, 7Li3+, and a few other heavier ions.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP030  
About • Received ※ 05 September 2023 — Revised ※ 10 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 01 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP035 Statistical Properties of Schottky Spectra simulation, synchrotron, betatron, dipole 433
 
  • C. Lannoy, D. Alves, K. Łasocha, N. Mounet
    CERN, Meyrin, Switzerland
  • C. Lannoy, T. Pieloni
    EPFL, Lausanne, Switzerland
 
  Schottky signals are used for non-invasive beam diagnostics as they contain information on various beam and machine parameters. The instantaneous Schottky signal is, however, only a single realisation of a random process, implicitly depending on the discrete distribution of synchrotron and betatron amplitudes and phases among the particles. To estimate the expected value of the Schottky power spectrum, and reveal the inner structure of the Bessel satellites described by the theory, the averaging of instantaneous Schottky spectra is required. This study describes this procedure quantitatively by analysing the statistical properties of the Schottky signals, including the expected value and variance of Schottky power spectra. Furthermore, we investigate how these quantities evolve with the number of particles in the bunch, the observed harmonic of the revolution frequency, the distribution of synchrotron oscillation amplitudes, and the bunch profile. The theoretical findings are compared against macro-particle simulations as well as Monte Carlo computations.  
poster icon Poster WEP035 [3.908 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP035  
About • Received ※ 05 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 29 September 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP042 Implementation of Transimpedance Analog Front-End Card for Los Alamos Neutron Science Center Accelerator Wire Scanners impedance, feedback, beam-diagnostic, electron 442
 
  • D. Rai, S.A. Baily, A.J. Braido, J.I. Duran, L.S. Kennel, H.L. Leffler, D. Martinez, L.S. Montoya, D.D. Zimmermann
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy, contract no. 89233218CNA000001. LA-UR-23-25123
The Los Alamos Neutron Science Center’s (LANSCE) Accelerator Operations and Technology division group executed a project that implemented a new analog front-end card (AFE) for their wire scanner’s Data Acquisition (DAQ) system. The AFE accommodates the signal amplification and noise reduction needed to acquire essential measurement data for beam diagnostics for the LANSCE accelerator. Wire Scanners are electro-mechanical beam interceptive devices that provide cross-sectional beam profile measurement data fitted to a Gaussian distribution that provides beam shape and position information. The beam operators use the beam shape and position information to adjust parameters such as acceleration, steering and focus on delivering an optimized beam to all targets. The project implemented software and hardware that eliminated the dependency on legacy systems and consolidated various AFE designs for diagnostics systems into a single design with 11 gain settings ranging from 100 nA to 40 mA at 10 V full scale to accommodate future applications on other diagnostic systems.
 
poster icon Poster WEP042 [2.193 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP042  
About • Received ※ 07 September 2023 — Revised ※ 10 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 27 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2C03 Analysis of the Transverse Schottky Signals in the LHC synchrotron, betatron, octupole, impedance 462
 
  • K. Łasocha, D. Alves
    CERN, Meyrin, Switzerland
 
  Schottky-based diagnostics are remarkably useful tools for the non-invasive monitoring of hadron beam and machine characteristics such as the betatron tune and the chromaticity. In this contribution recent developments in the analysis of the transverse Schottky signals measured at the Large Hadron Collider will be reported. A fitting-based technique, where the measured spectra are iteratively compared with theoretical predictions, will be presented and benchmarked with respect to the previously known methods and alternative diagnostic.  
slides icon Slides TH2C03 [4.054 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TH2C03  
About • Received ※ 06 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 19 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)