Keyword: lattice
Paper Title Other Keywords Page
MO2C03 Coupled Bunch Mode Zero Correction within the Orbit Feedback Bandwidth feedback, operation, synchrotron, controls 7
  • P.S. Kallakuri, A.R. Brill, J. Carwardine, L. Emery, N. Sereno
    ANL, Lemont, Illinois, USA
  Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
The fast orbit feedback (FOFB) bandwidth for Advanced photon source upgrade (APS-U) will be DC-1 kHz and the synchrotron frequency will be between 100-560 Hz. This frequency overlap places coupled bunch mode 0 (CBM0) induced horizontal orbit motion inside the orbit feedback bandwidth, potentially affecting our ability to achieve beam stability goals. Longitudinal feedback kicker is not strong enough to damp CBM0 oscillations. We developed new beam-based feedback method to suppress CBM0 oscillations with low level RF phase as actuator. It uses existent FOFB framework with no changes to the feedback algorithm. Effectiveness of this method is verified using present APS operations lattice where synchrotron frequency is outside orbit feedback bandwidth*. In the present work, low alpha lattice is created to emulate APS-U setting where synchrotron frequency is inside the orbit feedback bandwidth. Experiments with this lattice successfully demonstrated CBM0 correction within FOFB bandwidth. Combined operation of orbit feedback and CBM0 correction is stable, and CBM0 oscillations are damped. We achieved better orbit motion suppression and corrector drive efforts are reduced as well.
* P. Kallakuri et al., ’Coupled bunch mode zero correction using orbit measurements and RF system phase feedback’, doi:10.1103/PhysRevAccelBeams.25.082801
slides icon Slides MO2C03 [1.326 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MO2C03  
About • Received ※ 14 July 2023 — Revised ※ 07 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 25 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOP008 Consideration of Beam Instrumentation for SOLARIS Linac Upgrade linac, diagnostics, injection, emittance 45
  • A.I. Wawrzyniak, J.B. Biernat, R. Panaś, J.J. Wiechecki, M.T. Ünal
    NSRC SOLARIS, Kraków, Poland
  • A. Curcio
    LNF-INFN, Frascati, Italy
  SOLARIS linac currently operates at 540 MeV and is used as an injector to the storage ring, where after the accumulation the energy is ramped up to 1.5 GeV via two active RF cavities. Top-up injection would be of extreme benefits for user operation, therefore a new 1.5 GeV linac is being designed. The idea is to replace the current machine without infrastructural interventions in terms of tunnel expansion. Performed studies demonstrate that the best solution is provided by a Hybrid S-band/C-band LINAC. One of the main goals is to achieve bunch compression below the picosecond level and low-emittance beams for a future short-pulse facility or a Free Electron Laser. Within this presentation the results of performed simulations will be presented together with the concept of different diagnostics as BPMs, current transformers, YAG screens, coherent diffraction radiation monitor distribution.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP008  
About • Received ※ 08 September 2023 — Revised ※ 09 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 27 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)