Performance Evaluation of GAGG+ and Tungsten Carbide Blades in an X-ray Pinhole Camera S. Burholt, N. Vitoratou, L. Bobb, Diamond Light Source, Oxfordshire, UK

ABSTRACT

At Diamond Light Source two X-ray pinhole cameras are used to measure the transverse profile of the 3 GeV electron beam [1]. The current pinhole assembly is formed using tungsten blades with chemically etched shims to produce a 25 µm x 25 µm aperture and the imager incorporates a 0.2 mm LuAG:Ce scintillator. Tungsten carbide is a machinable high-Z material which at millimetre thicknesses is opaque to X-rays. With a slight change in pinhole design, similar to that already in place at the ESRF [2], tungsten carbide blades could offer a well-controlled aperture size for the pinhole camera with simpler assembly. Further to this, improvements to the photon yield of scintillators mean that the new scintillator GAGG+ has an almost two-fold increase in yield compared to the current LuAG:Ce scintillator [3]. An evaluation of the tungsten carbide blades and GAGG+ scintillator is presented.

Figure 1: Schematic of the monochromatic X-ray pinhole camera system [1,4].

Figure 2: Schematic of the traditional tungsten blade – shim – tungsten blade design (light grey and blue) and the tungsten carbide C-D design (dark grey) [2].

The tungsten carbide blades were manufactured by Midland Carbides, UK [5]. Microscope images measurements of these new tungsten carbide C-D apertures have found them to be larger at around **35 \mum, when they should be 25 \mum**.

Figure 3: Horizontal aperture scan with fitted beam size (σ_x, σ_y), peak intensity, and normalised error of tungsten and tungsten carbide aperture.

Figure 4: Vertical aperture scan with fitted beam size (σ_x, σ_Y) , peak intensity, and normalised error of tungsten and tungsten carbide aperture.

PHOTON YIELD COMPARISON BETWEEN LUAG:CE AND GAGG+

MTF	LuAG:Ce	GAGG+
MTF50 (lp/mm)	27.8	32.0
MTF10 (lp/mm)	70.7	78.6
Table 2: MTF values for LuAG:Ce and GAGG+		

CONCLUSIONS

It has been demonstrated that the new tungsten carbide blades are **larger by around 10 \mum**, which was confirmed by microscope images. The blade scans have shown they still produce good attenuation of the beam, though the vertical scan shows an increase in vertical beam size, attituded to its larger size.

GAGG+ has been demonstrated to have around an **78% increase in photon yield** and produce similar MTF values. This means replacement of LuAG:Ce with GAGG+ would improve the photon yield of the pinhole cameras without any loss of spatial resolution, even at low currents.

Further investigations are planned to record the PSF values of these pinhole cameras with the new tungsten carbide blades and GAGG+ scintillator using the Touschek calibration method.

Figure 6: LuAG:Ce (Left) and GAGG+ (Right) knife edge images captured using the same pinhole camera setup. ROIs shown for knife-edge MTF (dashed orange) and photon yield measurements (solid blue).

For a beam only section (solid blue ROI), the average intensity per pixel for LuAG:Ce was **88 a.u/pixel** and GAGG+ was **157 a.u/pixel** which is an increase of **78%**. This improvement can help provide reliable vertical emittance measurements, even with the synchrotron at lower currents. This can also help reduce jitter by allowing for shorter exposure times.

ACKNOWLEDGEMENTS

The authors would like to thank the Diamond operations team for the shift time to complete these experiments. Our thanks also goes to Midland Carbides for their effort in producing these blades.

REFERENCES

 [1] C. Thomas et al., "X-ray pinhole camera resolution and emittance measurement, Phys. Rev. Spec. Top. Accel Beams., vol. 13, no. 2, 2010.
[2] F. Ewald, "Emittance diagnostics at ESRF-EBS using the X-ray Pinhole Camera," presented at the ELETTRA 2.0 Workshop on Optical Diagnostics for Low-Emittance Storage Rings, Mar. 24, 2022

[3] Crytur Company Website, Specific GAGG+ and other materials, Accessed: Aug. 29, 2023. [Online.] Available: https://www.crytur.cz/materials/gagg/
[4] L.M. Bobb et al., "Performance Evaluation of Molybdenum Blades in an X-ray Pinhole Camera," Proc. of IBIC2016, Barcelona, Spain, pp. 795-798, 2016.
[5] Midland Carbides Company Website, Accessed: Aug. 29, 2023. [Online.] Available: https://www.midlandcarbides.co.uk/

