Fast Orbit Feedback for Diamond-II

12th International Beam Instrumentation Conference

I. Kempf^{1,2}, M. Abbott², L. Bobb², G. Christian², G. Rehm³, S. Duncan¹ ¹University of Oxford, ²Diamond Light Source, ³Helmholtz-Zentrum für Materialien und Energie Sep. 10-14, 2023, Saskatoon, Canada

Outline

- 1. Fast Orbit Feedback in the Storage Ring
- 2. Systems with One Corrector Type
- 3. Systems with Two Corrector Types: Slow and Fast Correctors
- 4. Controller Design for Diamond-II
- 5. Performance Predictions for Diamond-II
- 6. Tests on the Diamond Storage Ring

Fast Orbit Feedback (FOFB) in the Diamond Storage Ring

Short-term disturbances:

- Ground/girder vibrations
- RF/power supply noise
- Water cooling

• ...

Fast Orbit Feedback (FOFB) in the Diamond Storage Ring

Short-term disturbances:

- Ground/girder vibrations
- RF/power supply noise
- Water cooling

...

f Multi-Input Multi-Output f

Fast Orbit Feedback (FOFB) in the Diamond Storage Ring

Short-term disturbances:

- Ground/girder vibrations
- RF/power supply noise
- Water cooling

...

Horizontal Beam Displacement at BPM 1 $\begin{pmatrix} u \\ 1 \\ 0 \\ -2 \\ -4 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ -1 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ Time (s)$

💈 Multi-Input Multi-Output 💈

1. Major Changes:

- New MBA lattice \rightarrow smaller beam
- New beamlines \rightarrow higher frequency resolution
- New insertion devices with upstream & downstream BPMs

- ➡ M. G. Abbott *et al.*, "Diamond-II technical design report," Aug. 2022.
- ➡ L. T. Stant et al., "Diamond-II electron beam position monitor development," IBIC 2022.

1. Major Changes:

- New MBA lattice \rightarrow smaller beam
- New beamlines \rightarrow higher frequency resolution
- New insertion devices with upstream & downstream BPMs

2. Increased Stability Requirements:

Parameter	Diamond	Diamond-II	
Beam size H/V	123 μm 3.5 μm	30 μm 4 μm	
Rel. stability	10% up to $100Hz$	3% up to $1kHz$	
Abs. stability H/V	/ 12 µm 0.35 µm	0.9 μm 0.12 μm	

- M. G. Abbott et al., "Diamond-II technical design report," Aug. 2022.
- ➡ L. T. Stant et al., "Diamond-II electron beam position monitor development," IBIC 2022.

1. Major Changes:

- New MBA lattice \rightarrow smaller beam
- New beamlines \rightarrow higher frequency resolution
- New insertion devices with upstream & downstream BPMs

2. Increased Stability Requirements:

Parameter	Diamond	Diamond-II	
Beam size H/V	123 μm 3.5 μm	30 μm 4 μm	
Rel. stability	10% up to $100Hz$	3% up to 1kHz	
Abs. stability H/V	, 12 μm 0.35 μm	0.9 μm 0.12 μm	

➡ M. G. Abbott *et al.*, "Diamond-II technical design report," Aug. 2022.

➡ L. T. Stant et al., "Diamond-II electron beam position monitor development," IBIC 2022.

UNVESSITE OF OXFORD IN THE INFORMATION

3. Enhanced FOFB Specs:

Parameter	Diamond	Diamond-II
Closed-loop BW	140 Hz	$\geq 1\mathrm{kHz}$
Latency	700 µs	$\leq 100\mu s$
Number of BPMs	173	252
Number of correctors	172	252 slow 144 fast
Sample frequency	10 kHz	100 kHz

1. Major Changes:

- New MBA lattice \rightarrow smaller beam
- New beamlines \rightarrow higher frequency resolution
- New insertion devices with upstream & downstream BPMs

2. Increased Stability Requirements:

Parameter	Diamond	Diamond-II	
Beam size H/V	123 μm 3.5 μm	30 μm 4 μm	
Rel. stability	10% up to $100Hz$	3% up to $1{ m kHz}$	
Abs. stability H/V	/ 12 μm 0.35 μm	0.9 μm 0.12 μm	

3. Enhanced FOFB Specs:

Parameter	Diamond	Diamond-II	
Closed-loop BW	140 Hz	$\geq 1\mathrm{kHz}$	
Latency	700 µs	$\leq 100\mu s$	
Number of BPMs	173	252	
Number of correctors	172	252 slow 144 fast	
Sample frequency	10 kHz	100 kHz	

+ Centralised computing node (White Rabbit v4)

- + New communication network
- + New BPMs

M. G. Abbott et al., "Diamond-II technical design report," Aug. 2022.

➡ L. T. Stant et al., "Diamond-II electron beam position monitor development," IBIC 2022.

Orbit Feedback Dynamics for Diamond-II: Slow and Fast Correctors

 $y(s) = R_s g_s(s) u_s(s) + R_f g_f(s) u_f(s) + d(s)$

Beam displacement

Contribution from slow correctors

Contribution from fast correctors Disturbance

More on n(s) = S. Banerjee et al., "Modified FOFB controller for disturbance attenuation in long straights for D-II," IBIC 2023.

- A. C. Starritt, A. Pozar, and Y. E. Tan, ALS, 2019
 E. Plouviez and F. Uberto, ESRF-EBS, 2016
 M. Sjöström *et al.*, MAX IV, 2010
 N. Hubert *et al.*, SOLEIL, 2009
 - ✓ Separate loops for slow (f_{slow} \approx 1 Hz) & fast (f_{fast} = 10 \, kHz) correctors
 - ✓ Exchange data between slow & fast loops → no frequency deadband

- A. C. Starritt, A. Pozar, and Y. E. Tan, ALS, 2019
 E. Plouviez and F. Uberto, ESRF-EBS, 2016
 M. Sjöström *et al.*, MAX IV, 2010
 N. Hubert *et al.*, SOLEIL, 2009
 - ✓ Separate loops for slow ($f_{slow} \approx 1\,\text{Hz})$ & fast ($f_{fast} = 10\,\text{kHz})$ correctors
 - ✓ Exchange data between slow & fast loops → no frequency deadband
 - X No joint design for slow & fast loops
 - $\pmb{\varkappa}~ Requires~ f_{slow} \ll f_{fast}$

- A. C. Starritt, A. Pozar, and Y. E. Tan, ALS, 2019
 E. Plouviez and F. Uberto, ESRF-EBS, 2016
 M. Sjöström *et al.*, MAX IV, 2010
 N. Hubert *et al.*, SOLEIL, 2009
 - ✓ Separate loops for slow ($f_{slow} \approx 1\,\text{Hz})$ & fast ($f_{fast} = 10\,\text{kHz})$ correctors
 - ✓ Exchange data between slow & fast loops → no frequency deadband
 - X No joint design for slow & fast loops
 - $\pmb{\varkappa}~ Requires~ f_{slow} \ll f_{fast}$

- S. Gayadeen et al., Diamond, 2013
 - ✓ Based on decoupling the system into *fast* and *slow* modes
 - ✓ Joint design for slow & fast correctors
 - $\checkmark\,$ Does not require $f_{slow} \ll f_{fast}$

- A. C. Starritt, A. Pozar, and Y. E. Tan, ALS, 2019
 E. Plouviez and F. Uberto, ESRF-EBS, 2016
 M. Sjöström *et al.*, MAX IV, 2010
 N. Hubert *et al.*, SOLEIL, 2009
 - ✓ Separate loops for slow ($f_{slow} \approx 1\,\text{Hz})$ & fast ($f_{fast} = 10\,\text{kHz})$ correctors
 - ✓ Exchange data between slow & fast loops → no frequency deadband
 - X No joint design for slow & fast loops
 - $\pmb{\varkappa}~ Requires~ f_{slow} \ll f_{fast}$

- S. Gayadeen et al., Diamond, 2013
 - Based on decoupling the system into *fast* and *slow* modes
 - ✓ Joint design for slow & fast correctors
 - ✓ Does not require $f_{slow} \ll f_{fast}$
 - \bigstar Not applicable to $n_{fast} < n_{slow}$

- A. C. Starritt, A. Pozar, and Y. E. Tan, ALS, 2019
 E. Plouviez and F. Uberto, ESRF-EBS, 2016
 M. Sjöström *et al.*, MAX IV, 2010
 N. Hubert *et al.*, SOLEIL, 2009
 - ✓ Separate loops for slow ($f_{slow} \approx 1\,\text{Hz})$ & fast ($f_{fast} = 10\,\text{kHz})$ correctors
 - ✓ Exchange data between slow & fast loops → no frequency deadband
 - X No joint design for slow & fast loops
 - $\pmb{\varkappa}~ \text{Requires f}_{\text{slow}} \ll \text{f}_{\text{fast}}$

- S. Gayadeen et al., Diamond, 2013
 - Based on decoupling the system into *fast* and *slow* modes
 - ✓ Joint design for slow & fast correctors
 - $\checkmark\,$ Does not require $f_{slow} \ll f_{fast}$
 - $\pmb{\times}$ Not applicable to $n_{fast} < n_{slow}$
- I. Kempf et al., Diamond-II, 2023
 - ✓ Applicable to $n_{fast} < n_{slow}$
 - ✓ Applicable to ≥ 2 corrector arrays

- A. C. Starritt, A. Pozar, and Y. E. Tan, ALS, 2019
 E. Plouviez and F. Uberto, ESRF-EBS, 2016
 M. Sjöström *et al.*, MAX IV, 2010
 N. Hubert *et al.*, SOLEIL, 2009
 - ✓ Separate loops for slow ($f_{slow} \approx 1\,\text{Hz})$ & fast ($f_{fast} = 10\,\text{kHz})$ correctors
 - ✓ Exchange data between slow & fast loops → no frequency deadband
 - X No joint design for slow & fast loops
 - $\pmb{\varkappa}~ \text{Requires f}_{\text{slow}} \ll \text{f}_{\text{fast}}$

- slow & fast y
- S. Gayadeen et al., Diamond, 2013
 - ✓ Based on decoupling the system into *fast* and *slow* modes
 - ✓ Joint design for slow & fast correctors
 - ✓ Does not require $f_{slow} \ll f_{fast}$
 - \bigstar Not applicable to $n_{fast} < n_{slow}$
- I. Kempf et al., Diamond-II, 2023
 - ✓ Applicable to $n_{fast} < n_{slow}$
 - ✓ Applicable to ≥ 2 corrector arrays
- + Other controllers: linear quadratic regulator, model predictive control,...
- + Literature: cross-directional/spatio-temporal systems, paper making, steel rolling, process control,...

1. Fast Orbit Feedback in the Storage Ring

2. Systems with One Corrector Type

- 3. Systems with Two Corrector Types: Slow and Fast Correctors
- 4. Controller Design for Diamond-II
- 5. Performance Predictions for Diamond-II
- 6. Tests on the Diamond Storage Ring

Decoupling Systems with One Corrector Type in Modal Space

1. System with one corrector type:

 $y(s) = \frac{\mathsf{R}}{\mathsf{g}}(s)\,u(s) + \mathsf{d}(s)$

2. Substitute SVD:

$$\mathbf{y}(\mathbf{s}) = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathsf{T}} \, \mathbf{g}(\mathbf{s}) \, \mathbf{u}(\mathbf{s}) + \mathbf{d}(\mathbf{s})$$

3. Define modal variables:

$$\hat{y}(s) := U^{\mathsf{T}}y(s), \qquad \hat{u}(s) := V^{\mathsf{T}}u(s), \qquad \hat{d}(s) := U^{\mathsf{T}}d(s)$$

S. Gayadeen and S. R. Duncan, "Design of an electron beam stabilisation controller for a synchrotron," 2014.

Decoupling Systems with One Corrector Type in Modal Space

1. System with one corrector type:

 $y(s) = \frac{\mathsf{R}}{\mathsf{g}}(s)\,u(s) + \mathsf{d}(s)$

2. Substitute SVD:

$$\mathbf{y}(\mathbf{s}) = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathsf{T}} \, \mathbf{g}(\mathbf{s}) \, \mathbf{u}(\mathbf{s}) + \mathbf{d}(\mathbf{s})$$

3. Define modal variables:

$$\hat{y}(s) := U^{\mathsf{T}}y(s), \qquad \hat{u}(s) := V^{\mathsf{T}}u(s), \qquad \hat{d}(s) := U^{\mathsf{T}}d(s)$$

$$\hat{y}(s) = \sum g(s) \hat{u}(s) + \hat{d}(s)$$

 $n_y \times$ single-input single-output Large condition number $\sigma_{max}/\sigma_{min}$

➡ S. Gayadeen and S. R. Duncan, "Design of an electron beam stabilisation controller for a synchrotron," 2014.

Measured Vertical Disturbance at Diamond

Measured Vertical Disturbance at Diamond

Disturbance concentrated in low-order modes

- 1. Fast Orbit Feedback in the Storage Ring
- 2. Systems with One Corrector Type

3. Systems with Two Corrector Types: Slow and Fast Correctors

- 4. Controller Design for Diamond-II
- 5. Performance Predictions for Diamond-II
- 6. Tests on the Diamond Storage Ring

Generalised Singular Value Decomposition (GSVD) for two Matrices

 $y(s) = \mathsf{R}_s\, g_s(s)\, u_s(s) + \mathsf{R}_f\, g_f(s)\, u_f(s) + \mathsf{d}(s)$

$$\mathsf{R}_{\mathsf{s}} = \mathop{\textbf{X}} \begin{bmatrix} \boldsymbol{\Sigma}_{\mathsf{s}} \\ & \mathsf{I} \end{bmatrix} \mathsf{U}_{\mathsf{s}}^{\mathsf{T}} \qquad \qquad \mathsf{R}_{\mathsf{f}} = \mathop{\textbf{X}} \begin{bmatrix} \boldsymbol{\Sigma}_{\mathsf{f}} \\ & \mathsf{0} \end{bmatrix} \mathsf{U}_{\mathsf{f}}^{\mathsf{T}}$$

➡ G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3rd ed., 2013.

Generalised Singular Value Decomposition (GSVD) for two Matrices

 $y(s) = \mathsf{R}_s\,\mathsf{g}_s(s)\,\mathsf{u}_s(s) + \mathsf{R}_f\,\mathsf{g}_f(s)\,\mathsf{u}_f(s) + \mathsf{d}(s)$

$$\mathsf{R}_{\mathsf{s}} = \mathop{\textbf{X}} \begin{bmatrix} \boldsymbol{\Sigma}_{\mathsf{s}} \\ & \mathsf{I} \end{bmatrix} \mathsf{U}_{\mathsf{s}}^{\mathsf{T}} \qquad \qquad \mathsf{R}_{\mathsf{f}} = \mathop{\textbf{X}} \begin{bmatrix} \boldsymbol{\Sigma}_{\mathsf{f}} \\ & \mathsf{0} \end{bmatrix} \mathsf{U}_{\mathsf{f}}^{\mathsf{T}}$$

- $X \in \mathbb{R}^{n_y \times n_y}$ is invertible
- $\Sigma_{(\cdot)} = \text{diag}(\sigma_{(\cdot),1}, \dots, \sigma_{(\cdot),n_f})$ are the generalised singular values (\neq singular values)
- $U_{(\cdot)} \in \mathbb{R}^{n_{(\cdot)} imes n_y}$ are orthonormal
- ➡ G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., 2013.

Diagonalising the System with Slow and Fast Correctors

1. System with slow and fast actuators:

$$y(s)=\mathsf{R}_s\,g_s(s)\,u_s(s)+\mathsf{R}_f\,g_f(s)\,u_f(s)+d(s)$$

2. Substitute GSVD:

$$y(s) = \dots$$

3. Define generalised modes:

$$\hat{y}(s)\!:=\!X^{-1}y(s), \qquad \hat{u}_s(s)\!:=\!U_s^{\mathsf{T}}u_s(s), \qquad \hat{u}_f(s)\!:=\!U_f^{\mathsf{T}}u_f(s), \qquad \hat{d}(s)\!:=\!X^{-1}d(s)$$

$$\begin{split} \hat{y}(s) &= \begin{bmatrix} \Sigma_{s} \\ I \end{bmatrix} g_{s}(s) \, \hat{u}_{s}(s) \, + \, \begin{bmatrix} \Sigma_{f} \\ 0 \end{bmatrix} g_{f}(s) \, \hat{u}_{f}(s) + \hat{d}(s) \\ & n_{f} \times \text{ two-input single-output} \qquad n_{s} - n_{f} \times \text{ single-input single-output} \end{split}$$

🗯 I. Kempf, P. Goulart, and S. Duncan, "A higher-order GSVD for rank-deficient matrices," SIAM J. Matrix Anal. Appl., Sep. 2023.

- 1. Fast Orbit Feedback in the Storage Ring
- 2. Systems with One Corrector Type
- 3. Systems with Two Corrector Types: Slow and Fast Correctors
- 4. Controller Design for Diamond-II
- 5. Performance Predictions for Diamond-II
- 6. Tests on the Diamond Storage Ring

M. Morari and E. Zafiriou, Robust Process Control, 1989.

1. Choose T(s) and invert plant:

 $\mathsf{Q}(\mathsf{s}) = \bar{\mathsf{P}}^{\dagger}(\mathsf{s}) \,\mathsf{T}(\mathsf{s})$

M. Morari and E. Zafiriou, Robust Process Control, 1989.

1. Choose T(s) and invert plant:

 $\mathsf{Q}(\mathsf{s}) = \bar{\mathsf{P}}^{\dagger}(\mathsf{s}) \,\mathsf{T}(\mathsf{s})$

2. Closed loop for perfect model
$$(\bar{P}(s) = P(s))$$
:

 $\mathsf{y}(\mathsf{s}) = \left(1 - \mathsf{T}(\mathsf{s})\right)\mathsf{d}(\mathsf{s})$

M. Morari and E. Zafiriou, Robust Process Control, 1989.

M. Morari and E. Zafiriou, Robust Process Control, 1989.

1. Choose T(s) and invert plant:

 $\mathsf{Q}(\mathsf{s}) = \bar{\mathsf{P}}^{\dagger}(\mathsf{s}) \,\mathsf{T}(\mathsf{s})$

2. Closed loop for perfect model $(\overline{P}(s) = P(s))$:

 $\mathbf{y}(\mathbf{s}) = \left(1 - \mathsf{T}(\mathbf{s})\right) \mathsf{d}(\mathbf{s})$

4. Controller Design for Diamond-II | Idris Kempf, University of Oxford

4. Controller Design for Diamond-II | Idris Kempf, University of Oxford

S. Gayadeen and W. Heath, "An Internal Model Control Approach to Mid-Ranging Control," 2009.

Internal Model Control for Systems with Slow and Fast Correctors

I. Kempf, P. Goulart, and S. Duncan, "Control of cross-directional systems using the GSVD," arXiv, Aug. 2023.

Internal Model Control for Systems with Slow and Fast Correctors

1. Choose $T_s(s)$, $T_f(s)$, and "invert" plant:

$$\begin{split} \mathsf{Q}_{\mathsf{s}}(\mathsf{s}) &= \bar{\mathsf{P}}_{\mathsf{s}}^{\dagger}(\mathsf{s}) \, \mathsf{T}_{\mathsf{s}}(\mathsf{s}) \\ \mathsf{Q}_{\mathsf{f}}(\mathsf{s}) &= \bar{\mathsf{P}}_{\mathsf{f}}^{\dagger}(\mathsf{s}) \, \mathsf{T}_{\mathsf{f}}(\mathsf{s}) \, \Upsilon_{\mathsf{f}}(\mathsf{s}) \, \Upsilon_{\mathsf{f}} \end{split}$$

2. Closed loop for perfect model $(\overline{P}(s) = P(s))$:

$$y(s) = \begin{pmatrix} I - IT_s(s) - X \begin{bmatrix} IT_f(s) & \\ & 0 \end{bmatrix} X^{-1} \Upsilon_f \end{pmatrix} d(s)$$

3. Add Υ_f if $n_f < n_s$

I. Kempf, P. Goulart, and S. Duncan, "Control of cross-directional systems using the GSVD," arXiv, Aug. 2023.

Choosing the Closed-Loop Bandwidth for Diamond-II

Bandwidth $\uparrow \Rightarrow$ Peak of S(s) $\uparrow \Rightarrow$ Instability, disturbance amplification

Choosing the Closed-Loop Bandwidth for Diamond-II

Bandwidth $\uparrow \Rightarrow$ Peak of S(s) $\uparrow \Rightarrow$

Instability, disturbance amplification

Limiting factors for Diamond-II:

- Time delay
- Complexity of g_(·)(s)
- Slow corrector bandwidth

Choosing the Closed-Loop Bandwidth for Diamond-II

Bandwidth $\uparrow \Rightarrow$ Peak of S(s) $\uparrow \Rightarrow$

Instability, disturbance amplification

Limiting factors for Diamond-II:

- Time delay
- Complexity of g_(.)(s)
- Slow corrector bandwidth

Tikhonov Regularisation: Avoid Large Control Inputs for Slow and Fast Correctors

- <code>X</code> Controller gains $\sim 1/\sigma_{\rm i}$
- X Large corrector inputs u(s)

Tikhonov Regularisation: Avoid Large Control Inputs for Slow and Fast Correctors

- $\pmb{\times}$ Controller gains $\sim 1/\sigma_{\rm i}$
- X Large corrector inputs u(s)
- ✓ Attenuate gains for $\sigma_i^2 \ll \mu$:

$$\Gamma = \mathsf{U} \operatorname{diag} \left(\frac{\sigma_1^2}{\sigma_1^2 + \mu}, \dots, \frac{\sigma_{\mathsf{n}_y}^2}{\sigma_{\mathsf{n}_y}^2 + \mu} \right) \mathsf{U}^\mathsf{T}$$

Overall Attenuation of d(s) – Vertical

Engineering and Physical Sciences

OXFORI

- ✓ Mainly affects higher-order modes
- Disturbance concentrated in low-order modes

- 1. Fast Orbit Feedback in the Storage Ring
- 2. Systems with One Corrector Type
- 3. Systems with Two Corrector Types: Slow and Fast Correctors
- 4. Controller Design for Diamond-II
- 5. Performance Predictions for Diamond-II
- 6. Tests on the Diamond Storage Ring

Predicting the Performance for Diamond-II using Estimated Disturbance

Given disturbance PSD, predict performance via...

- Conservative upper bound
- Simulations using sampled disturbance

Martin et al., "Orbit Stability Studies for the Diamond-II Storage Ring," IPAC 2022.

Predicting the Performance for Diamond-II using Estimated Disturbance

Given disturbance PSD, predict performance via...

- Conservative upper bound
- Simulations using sampled disturbance

Martin et al., "Orbit Stability Studies for the Diamond-II Storage Ring," IPAC 2022.

Stability Targets for Diamond-II Met Except for Long Straights

Integrated Beam Motion at 1 kHz (in µm)

	Horizontal			Vertical		
	LS	MS	SS	LS	MS	SS
Disturbance	0.68	0.47	0.6	0.25	0.21	0.22
Target	1.20	0.90	0.97	0.23	0.14	0.18
Upper Bound	0.47	0.23	0.34	0.26	0.09	0.12
Simulation	0.17	0.07	0.08	0.18	0.05	0.07

LS: Long Straight, MS: Mid Straights, SS: Short Straights

Stability Targets for Diamond-II Met Except for Long Straights

Integrated Beam Motion at 1 kHz (in µm)

	Horizontal			Vertical		
	LS	MS	SS	LS	MS	SS
Disturbance	0.68	0.47	0.6	0.25	0.21	0.22
Target	1.20	0.90	0.97	0.23	0.14	0.18
Upper Bound	0.47	0.23	0.34	0.26	0.09	0.12
Simulation	0.17	0.07	0.08	0.18	0.05	0.07

LS: Long Straight, MS: Mid Straights, SS: Short Straights

${\it I}$ PSD not suited for regularisation or TISO/SISO split ${\it I}$

- 1. Fast Orbit Feedback in the Storage Ring
- 2. Systems with One Corrector Type
- 3. Systems with Two Corrector Types: Slow and Fast Correctors
- 4. Controller Design for Diamond-II
- 5. Performance Predictions for Diamond-II
- 6. Tests on the Diamond Storage Ring

Tests on the Existing Diamond Storage Ring

1. Implementation:

- VadaTech AMC540
- FPGA for signal routing
- DSPs for $H/V\ controllers$

Tests on the Existing Diamond Storage Ring

1. Implementation:

- VadaTech AMC540
- FPGA for signal routing
- DSPs for $H/V\ controllers$

2. Configuration:

- Existing computing nodes bypassed
- Star topology

Tests on the Existing Diamond Storage Ring

1. Implementation:

- VadaTech AMC540
- FPGA for signal routing
- DSPs for H/V controllers

3. Adapt Diamond-II controller:

- Choose $n_y = 96 \text{ BPMs}$
- Choose $n_{s}=96\ "slow"$ and $n_{f}=64\ "fast"$ correctors
- Split 140 Hz bandwidth using mid-ranging:
 - Fast (TISO) bandwidth at 140 Hz
 - Slow (SISO) bandwidth at 50 Hz

2. Configuration:

- Existing computing nodes bypassed
- Star topology

Comparing Results from the Storage Ring with Simulations

- Practice matches simulation results
- ✓ Single-array and two-array controllers show similar performance
- ➡ I. Kempf, "Advanced control systems for fast orbit feedback of synchrotron electron beams," PhD thesis, Nov. 2023.

Conclusions

- Joint design method for slow & fast correctors
 - ✓ Predict performance for Diamond-II
 - ✓ Analyse split between slow and fast modes
 - ✓ Standard regularisation
- Mid-ranging approach
 - ✓ Seamless split between slow and fast correctors
 - ✓ Bandwidths can be tuned easily
- Successful tests on the existing storage ring:
 - ✓ Diamond-II controller works in practice
 - ✓ Performance in-line with theoretical expectations
 - ✓ Performance comparable to controller with one corrector type

On-Going Work at Diamond

- → Impact of noise & signal-to-noise ratio
- Models for slow & fast correctors:
 - \twoheadrightarrow AC power supply for fast correctors \Rightarrow modify mid-ranging approach
 - \Rightarrow Vacuum vessel geometries may produce > 1 fast corrector type \Rightarrow use *higher-order* GSVD
 - Identify more accurate models when prototypes are available
- → Integrate front-end XBPMs in FOFB
 - → Increased fault tolerance
 - ➡ Controller allows electron BPMs to be substituted for X-ray BPMs
- Additional research
 - Closed-loop sensitivity identification
 - Alternative algorithms (e.g. model predictive control and linear quadratic regulator)

idris.kempf@eng.ox.ac.uk

