Keyword: MEBT
Paper Title Other Keywords Page
TU1I02 Beam Instrumentation Performance During Commissioning of the ESS Normal Conducting LINAC DTL, linac, MMI, neutron 136
 
  • I.D. Kittelmann, R.A. Baron, E.C. Bergman, E.M. Donegani, V. Grishin, H. Hassanzadegan, H. Kocevar, N. Milas, R. Miyamoto, M. Mohammednezhad, F. Nilen, D. Noll, K.E. Rosengren, T.J. Shea, R. Tarkeshian, C.A. Thomas
    ESS, Lund, Sweden
 
  Once constructed, the European Spallation Source (ESS) will be a 5MW pulsed neutron source based on a 2 GeV proton linac delivering 2.86 ms long pulses at a 14 Hz repetition rate. This paper focuses on the beam instrumentation performance during the recent linac beam commissioning up to drift tube linac (DTL) tank 4 with 74 MeV output energy. Instrumentation and measurement results will be presented for beam parameters such as current, position, energy, emittance and beam loss.
Proposal by Peter, same proposal as ID 1283 by Wim. Alternative speaker Cyrille Thomas (ESS).
 
slides icon Slides TU1I02 [6.143 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TU1I02  
About • Received ※ 07 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 01 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP038 BCM System Optimization for ESS Beam Commissioning through the DTL Tank4 DTL, LEBT, MMI, linac 277
 
  • H. Hassanzadegan, R.A. Baron, S. Gabourin, H. Kocevar, M. Mohammednezhad, J.F.J. Murari, S. Pavinato, K.E. Rosengren, T.J. Shea, R. Zeng
    ESS, Lund, Sweden
  • K. Czuba, P.K. Jatczak
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  The ESS BCM system is not only used for beam measurement but it also plays an important role for machine protection particularly in the normal-conducting part of the linac. During the previous beam commissionings to the MEBT and DTL1 FCs and before the cavities were fully conditioned, RF breakdowns and other types of discharges in the cavities had a major impact on beam availability due to the Fast machine protection functions of the BCM. Following an investigation on the root cause of the beam trips, the configuration of the machine protection functions was modified to improve beam availability in the more recent beam commissioning to the DTL4 FC. In addition to this, some optimizations were made in the BCM system to improve beam measurement, and a few more functions were added based on new requirements. This paper reports on these improvements and the results obtained during the beam commissioning through the DTL4.  
poster icon Poster TUP038 [2.040 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP038  
About • Received ※ 31 July 2023 — Revised ※ 11 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 14 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP024 A Simulation of the Photoionization of H Together With the Subsequent Tracking of the Liberated Electrons laser, electron, simulation, linac 400
 
  • R.M. Thurman-Keup, M. El Baz, V.E. Scarpine
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was produced by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The Proton Improvement Plan - II (PIP-II) is a new linear accelerator (LINAC) complex being built at Fermilab. It is based on superconducting radiofrequency cavities and will accelerate H ions to 800 MeV kinetic energy before injection into the existing Booster ring. Measurements of the profile of the beam along the LINAC must be done by non-intercepting methods due to the superconducting cavities. The method chosen is photoionization of a small number of H by a focused infrared laser, aka laserwire. The number of ionized electrons is measured as a function of laser position within the H beam. To aid in the design of the collection mechanism, a simulation was written in MATLAB with input from the commercial electromagnetic simulation, CST. This simulation calculates the number and positions of the liberated electrons and tracks them through the magnetic collection and H beam fields to the collection point. Results from this simulation for various points along the LINAC will be shown.
 
poster icon Poster WEP024 [7.451 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP024  
About • Received ※ 08 September 2023 — Revised ※ 10 September 2023 — Accepted ※ 12 September 2023 — Issue date ※ 30 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)