Keyword: instrumentation
Paper Title Other Keywords Page
MOP001 Current Status of the HESR Beam Instrumentation vacuum, pick-up, controls, antiproton 29
 
  • C. Böhme
    FZJ, Jülich, Germany
  • A.J. Halama, V. Kamerdzhiev, G.K. Koch, K. Laihem, K. Reimers
    GSI, Darmstadt, Germany
 
  The High Energy Storage Ring (HESR), within the FAIR project, will according to current planning provide anti-proton beams for PANDA and heavy ion beams for i.a. the SPARC experiment. Manufacturing for most of the envisaged beam instrumentation devices in vacuum is completed and testing is well underway. The overall status update of the beam instrumentation devices is presented, with a focus on the test-bench results of the BPMs. In addition, the planned future timeline of the HESR beam instrumentation is briefly reported.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP001  
About • Received ※ 06 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 18 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP009 A Snapshot of CERN Beam Instrumentation R&D Activities radiation, electron, collider, proton 49
 
  • T. Lefèvre, D. Alves, A. Boccardi, S. Jackson, F. Roncarolo, J.W. Storey, R. Veness, C. Zamantzas
    CERN, Meyrin, Switzerland
 
  The CERN accelerator complex stands out as an unique scientific tool, distinguished by its scale and remarkable diversity. Its capacity to explore a vast range of beam parameters is truly unparalleled, spanning from the minute energies of around a few keV and microampere antiproton beams, decelerated within the CERN antimatter factory, to the 6.8 TeV high-intensity proton beams that race through the Large Hadron Collider (LHC). The Super Proton Synchrotron (SPS) ring plays also a crucial role by slowly extracting protons at 400 GeV. These proton currents are then directed toward various targets, generating all sorts of secondary particle beams. These beams, in turn, become the foundation of a diverse fixed-target research program, enabling scientific exploration across a wide spectrum. Moreover, as CERN looks ahead to future studies involving electron-positron colliders, the development of cutting-edge diagnostics for low emittance, short electron pulses is also underway. This contribution serves as a snapshot, shedding light on the main R&D initiatives currently underway at CERN in the field of beam instrumentation.  
poster icon Poster MOP009 [13.654 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP009  
About • Received ※ 06 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 17 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP044 The Digital Signal Processing Chain of the CERN LIU BWS FPGA, controls, interface, timing 288
 
  • D. Belohrad
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
  • J. Emery, J.C. Esteban Felipe, A. Goldblatt, A. Guerrero, M. Martin Nieto, F. Roncarolo
    CERN, Meyrin, Switzerland
 
  Between 2019 and 2023, as part of the LHC Injectors Upgrade (LIU), a major renovation of the CERN wire scanners (BWS) was performed. The main driving force was to prepare the wire scanners for the High-Luminosity LHC (HL-LHC), during which the instantaneous luminosity is expected to double, to around 5× 1034cm-2s-1. In 2021 seventeen LIU BWSs were installed in the CERN PS complex and the SPS. Additionally, two BWSs were installed in the LHC, at the end of 2022, to be ready for the 2023 LHC run. The aim of the contribution is to describe in detail the technical implementation of the digital signal acquisition (DAQ) and data processing of the newly installed BWSs. Particular attention is given to the design of the analogue front-end, signal conversion, and data processing chain ¿ providing raw data for the profile reconstruction. The synchronisation of the incoming digitised signal with the machine timing is also a focus point, as it differs significantly between the PS complex on the one hand and the LHC and SPS on the other hand. In conclusion we present beam measurements, and discuss the limitations of the algorithms used.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP044  
About • Received ※ 08 September 2023 — Revised ※ 10 September 2023 — Accepted ※ 12 September 2023 — Issue date ※ 15 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2C03 Beam Instrumentation Hardware Architecture for Upgrades at the BNL Collider-Accelerator Complex and the Future Electron Ion Collider electron, collider, hardware, power-supply 308
 
  • R.J. Michnoff, L. DeSanto, C.M. Degen, S.H. Hafeez, R.L. Hulsart, J.P. Jamilkowski, J. Mead, K. Mernick, G. Narayan, P. Oddo, M.C. Paniccia, J.A. Pomaro, A.C. Pramberger, J.C. Renta, F. Severino
    BNL, Upton, New York, USA
  • D.M. Gassner
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Many beam instrumentation systems at Brookhaven National Laboratory¿s Collider-Accelerator complex are over 20 years old and in need of upgrading due to obsolete components, old technology and the desire to provide improved performance and enhanced capabilities. In addition, many new beam instrumentation systems will be developed for the future Electron Ion Collider (EIC) that will be housed in the existing Relativistic Heavy Ion Collider (RHIC) tunnel. A new BNL designed custom hardware architecture is planned for both upgrades in the existing facility and new systems for the EIC. A general-purpose carrier board based on the Xilinx Zynq Ultrascale+ System-on-Chip (SoC) will interface with a family of application specific daughter cards to satisfy the requirements for each system. This paper will present the general architecture that is planned, as well as details for some of the application specific daughter cards that will be developed.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides WE2C03 [6.911 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WE2C03  
About • Received ※ 09 September 2023 — Revised ※ 11 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 27 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP025 A Study of the Gain of Microchannel Plates in the Ionization Profile Monitors at Fermilab electron, ECR, booster, vacuum 405
 
  • R.M. Thurman-Keup, C.E. Lundberg, D. Slimmer, J.R. Zagel
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was produced by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
One of the on-going issues with the use of microchannel plates (MCP) in the ionization profile monitors (IPM) at Fermilab is the significant decrease in gain over time. There are several possible issues that can cause this. Historically, the assumption has been that this is aging, where the secondary emission yield (SEY) of the pore surface changes after some amount of extracted charge. Recent literature searches have brought to light the possibility that this is an initial ’scrubbing’ effect whereby adsorbed gasses are removed from the MCP pores by the removal of charge from the MCP. This paper discusses the results of studies conducted on the IPMs in the Main Injector at Fermilab.
 
poster icon Poster WEP025 [7.408 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP025  
About • Received ※ 08 September 2023 — Revised ※ 10 September 2023 — Accepted ※ 11 September 2023 — Issue date ※ 18 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP028 LANSCE High Density Emittance Instrumentation System emittance, controls, hardware, data-acquisition 413
 
  • L.S. Montoya, S.A. Baily, S.M. Johnson, H.L. Leffler, H.A. Watkins, D.D. Zimmermann
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy, contract no. 89233218CNA000001. LA-UR-23-25123
The Los Alamos Neutron Science Center (LANSCE) is currently upgrading the existing emittance stations with a high-density instrumentation system for emittance measurements in the low energy beam transport region. Emittance measurements were obtained using obsolete legacy equipment. For motion control a switching station with a mechanical mux to switch actuators was used. This caused a single point of failure for all emittance stations and is becoming increasingly unreliable. For data acquisition, two sets of signal conditioning and digitizers were employed and had to be shared between 7 emittance stations. Physical cable swapping was necessary when taking measurements from station to station. A system was developed using dedicated Quad Actuator Controller (QAC) chassis, capable of driving four (4) actuators, and dedicated data acquisition (DAQ) chassis capable of signal conditioning and digitizing up to 80 channels simultaneously. Details of the system development are presented.
 
poster icon Poster WEP028 [0.400 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP028  
About • Received ※ 07 September 2023 — Revised ※ 11 September 2023 — Accepted ※ 25 September 2023 — Issue date ※ 01 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP029 LANSCE QAC/DAQ Wire Scanner Instrumentation Upgrade controls, hardware, data-acquisition, impedance 415
 
  • L.S. Montoya, S.M. Johnson, H.A. Watkins, D.D. Zimmermann
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy, contract no. 89233218CNA000001. LA-UR-23-25124
High density instrumentation has been developed to upgrade wire scanner beam diagnostic capability in all areas downstream of the Coupled Cavity LINAC (CCL). Transverse beam profile measurements were originally obtained using legacy electronics known as Computer Automated Measurement and Control (CAMAC) crates. CAMAC has become obsolete, and a new wire scanner diagnostic system was developed as a replacement. With high wire scanner device density located in each area, instrumentation was developed to meet that need along with the ability to interface with legacy open-loop controlled actuators and be forward compatible with upgraded closed-loop systems. A high-density system was developed using a Quad Actuator Controller (QAC) and Data Acquisition (DAQ) chassis that pair together using a sequencer when taking measurements. Software improvements were also made, allowing for full waveform functionality that was previously unavailable. Deployment of 52 wire scanner locations in 2022 increased device availability and functionality across the facility. Hardware and software design details along with results from accelerator beam measurements are presented.
 
poster icon Poster WEP029 [2.359 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP029  
About • Received ※ 07 September 2023 — Revised ※ 11 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 20 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)