Paper | Title | Page |
---|---|---|
TU1I02 | Beam Instrumentation Performance During Commissioning of the ESS Normal Conducting LINAC | 136 |
|
||
Once constructed, the European Spallation Source (ESS) will be a 5MW pulsed neutron source based on a 2 GeV proton linac delivering 2.86 ms long pulses at a 14 Hz repetition rate. This paper focuses on the beam instrumentation performance during the recent linac beam commissioning up to drift tube linac (DTL) tank 4 with 74 MeV output energy. Instrumentation and measurement results will be presented for beam parameters such as current, position, energy, emittance and beam loss.
Proposal by Peter, same proposal as ID 1283 by Wim. Alternative speaker Cyrille Thomas (ESS). |
||
Slides TU1I02 [6.143 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TU1I02 | |
About • | Received ※ 07 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 01 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP038 | BCM System Optimization for ESS Beam Commissioning through the DTL Tank4 | 277 |
|
||
The ESS BCM system is not only used for beam measurement but it also plays an important role for machine protection particularly in the normal-conducting part of the linac. During the previous beam commissionings to the MEBT and DTL1 FCs and before the cavities were fully conditioned, RF breakdowns and other types of discharges in the cavities had a major impact on beam availability due to the Fast machine protection functions of the BCM. Following an investigation on the root cause of the beam trips, the configuration of the machine protection functions was modified to improve beam availability in the more recent beam commissioning to the DTL4 FC. In addition to this, some optimizations were made in the BCM system to improve beam measurement, and a few more functions were added based on new requirements. This paper reports on these improvements and the results obtained during the beam commissioning through the DTL4. | ||
Poster TUP038 [2.040 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP038 | |
About • | Received ※ 31 July 2023 — Revised ※ 11 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 14 September 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |