Paper | Title | Page |
---|---|---|
MOP038 | Development of an Active Beam-Stabilization System for Electrofission Experiments at the S-Dalinac | 111 |
|
||
Funding: Work supported by DFG (GRK 2128), BMBF (05H21RDRB1), the State of Hesse within the Research Cluster ELEMENTS (Project ID 500/10.006) and the LOEWE Research Group Nuclear Photonics. The r-process fission cycle terminates the natural synthesis of heavy elements in binary neutron-star mergers. Fission processes of transuranium nuclides will be studied in electrofission reactions at the S-DALINAC*. Due to the minuscule fissile target, the experimental setup requires an active electron-beam-stabilization system with high accuracy and a beam position resolution in the submillimeter range. In this contribution, requirements and concepts of this system regarding beam-diagnostic elements, feedback control and readout electronics are presented. The usage of a beam position monitor cavity and optical transition radiation targets to monitor the required beam parameters will be discussed in detail. Additionally, various measurements performed at the S-DALINAC to assess requirements and limits for the beam-stabilization system will be presented. Finally, the option of using advanced machine learning methods such as neural networks and agent-based reinforcement learning will be discussed. *N. Pietralla, Nuclear Physics News, Vol. 28, No. 2, 4 (2018) |
||
Poster MOP038 [1.526 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP038 | |
About • | Received ※ 06 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 23 September 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |