Keyword: resonance
Paper Title Other Keywords Page
MOP031 A Study Into the Long-Term Stability of Front End X-Ray Beam Position Monitor Support Columns at Diamond Light Source laser, experiment, ground-motion, damping 90
  • C.E. Houghton, C. Bloomer, L. Bobb, D. Crivelli, J.E. Melton, H. Patel
    DLS, Harwell, United Kingdom
  Sand-filled steel columns are used at Diamond Light Source to support front end X-ray beam position monitors. This approach is chosen due to the relatively large thermal mass of the sand being considered useful to reduce the rate at which expansion and contraction of the column occurred as the storage ring tunnel temperature varied, particularly during machine start-up. With the higher requirements for mechanical stability for the upcoming Diamond-II upgrade, there is now a need to assess and quantify the current system’s impact on X-ray beam movement. A study of thermal and mechanical stability has been carried out to quantify the stability performance of the front end X-ray beam position monitor’s columns and the impact that column motion may have on the X-ray beam position measurement. Measurements have been made over a range of different timescales, from 250 Hz up to 2 weeks. The measured stability of the support column is presented, showing that it meets our Diamond-II stability requirements. A comparison of the stability of the column with and without a sand filling is presented.  
poster icon Poster MOP031 [0.594 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP031  
About • Received ※ 06 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 17 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP034 Axial Cryogenic Current Comparator (CCC) for FAIR detector, pick-up, cryogenics, shielding 259
  • L. Crescimbeni, D.M. Haider, A. Reiter, M. Schwickert, T. Sieber, T. Stöhlker
    GSI, Darmstadt, Germany
  • D.M. Haider
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M. Schmelz, R. Stolz, V. Zakosarenko
    IPHT, Jena, Germany
  • F. Schmid, V. Tympel
    FSU Jena, Jena, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • T. Stöhlker, V. Tympel
    HIJ, Jena, Germany
  • V. Zakosarenko
    Supracon AG, Jena, Germany
  Funding: Work supported by the BMBF under contract No. 05P21SJRB1.
The Cryogenic Current Comparator (CCC) is a superconducting device based on an ultrasensitive SQUID (fT range). Measuring the beam¿s azimuthal magnetic field, it provides a calibrated non-destructive measurement of beam current with a resolution of 10 nA or better, independent from ion species and without tedious calibrations procedure. The non-interceptive absolute intensity measurement of weak ion beams (< 1 µA) is essential in heavy ion storage rings and in transfer lines at FAIR. With standard diagnostics, this measurement is challenging for bunched beams and virtually impossible for coasting beams. To improve the performance of the detector several upgrades are under study and development: One is the investigation of a new type of CCC using an alternative magnetic shield geometry. The so-called ‘axial¿ geometry will allow for much higher magnetic shielding factor, an increased pick-up area, and a lower low frequencies noise component. Further improvements and optimizations of the detector will be presented. The CCC will be tested on the beamline at the end of 2023 allowing to define the best possible version for FAIR.
poster icon Poster TUP034 [3.877 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP034  
About • Received ※ 06 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 20 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)