Keyword: focusing
Paper Title Other Keywords Page
MOP045 Robust Emittance Measurements emittance, solenoid, quadrupole, experiment 127
 
  • I. Pinayev
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The quadrupole scan is commonly used for measurement of beam emittance. The found dependence of the beam size vs. quadrupole strength is fitted with parabola, which coefficients are used for emittance calculations. The measurement errors can cause substantial variations in the emittance value. Sometimes the fitted parabola has negative minimum value, making impossible emittance calculation. We propose more robust data processing using weighted fit for parabola or modifying the quadrupole scan procedure. The experimental results are presented.
 
poster icon Poster MOP045 [0.255 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP045  
About • Received ※ 25 August 2023 — Revised ※ 11 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 28 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP021 100Hz X-ray Beam Profile Measurements from a Transmissive CVD Diamond Detector detector, synchrotron, experiment, photon 387
 
  • C. Bloomer, L. Bobb
    DLS, Oxfordshire, United Kingdom
  • M.E. Newton
    University of Warwick, Coventry, United Kingdom
 
  A non-destructive CVD diamond X-ray beam imaging monitor has been developed for synchrotron beamlines. The device can be permanently installed in the X-ray beam path and is capable of transmissively imaging the beam profile at 100 frames per second. The response of this transmissive detector at this imaging rate is compared to synchronously acquired images using a destructive fluorescent screen. It is shown that beam position, size, and intensity measurements can be obtained with minimal disturbance to the transmitted X-ray beam. This functionality is beneficial to synchrotron beamlines as it enables them to monitor the X-ray beam focal size and position in real-time, during user experiments. This is a key enabling technology that would enable live beam size feedback, keeping the beamline’s focusing optics optimised at all times. Ground vibrations (10-20Hz) can cause movement of focusing optics and beamline mirrors, which disturb the X-ray beam and reduce the ultimate quality of the sample-point beam. This instrument can detect this beam motion, enabling the source to be more easily determined and mitigations to be put in place.  
poster icon Poster WEP021 [1.842 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP021  
About • Received ※ 06 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 11 September 2023 — Issue date ※ 02 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP036 Study of Non-destructive BPM-Based Energy Measurement of the Canadian Light Source Linac linac, quadrupole, electron, survey 438
 
  • H. Shaker, A. Bertwistle, E.J. Ericson, Y. Yousefi Sigari
    CLS, Saskatoon, Saskatchewan, Canada
  • E. Soltan, Y. Yousefi Sigari
    University of Saskatchewan, Saskatoon, Canada
 
  There is a plan in the Canadian Light Source (CLS) to replace the current Linac with a new one from Research Instruments GmbH in mid-2024. The first straight section of LTB (Linac-To-Booster) was upgraded to have two BPMs with a 4.79m drift between them, and two phosphor screens were replaced by YAG screens. A new BPM and a YAG-based screen station upgraded the following 90-degree achromat beamline. These upgrades help us to measure the current and future Linac beam parameters, including the beam twiss parameters, energy, and energy spread. In this paper, we discussed how we could use these three BPMs for non-destructive energy measurement, which will be a part of the active energy correction system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP036  
About • Received ※ 29 August 2023 — Revised ※ 09 September 2023 — Accepted ※ 27 September 2023 — Issue date ※ 28 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)