Paper | Title | Page |
---|---|---|
TUP011 | Geometry Study of an RF-Window for a GHz Transition Radiation Monitor for Longitudinal Bunch Shape Measurements | 209 |
|
||
Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract no. 05P21RORB2. Joint Project 05P2021 - R&D Accelerator (DIAGNOSE) GHz transition radiation monitors (GTRs) can be used to measure longitudinal beam profiles even for low ß beams. In comparison to traditional methods e.g., Fast Faraday Cups (FFCs) and Feschenko monitors, GTRs are a non-destructive measurement method and are able to resolve bunch-by-bunch longitudinal profiles at the same time. In our case, we plan to measure the transition radiation outside the beam line through an RF-window with an 8 GHz broad band antenna. At the border of the RF-window the transition radiation is partially reflected propagating in the beam line backwards. In this contribution, we show a study of different geometries to suppress reflections generated at the transition to the RF-window. For higher permittivity the strength of these reflections becomes stronger, simultaneously reducing the measurable signal strength at the antenna. Secondly the RF-window material must be UHV usable and should be durable like Alumina or Peek. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP011 | |
About • | Received ※ 25 September 2023 — Revised ※ 29 September 2023 — Accepted ※ 30 September 2023 — Issue date ※ 30 September 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP012 | First Measurements of an Electro-Optical Bunch Arrival-Time Monitor Prototype with PCB-Based Pickups for ELBE | 214 |
|
||
Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under Contract No. 05K19RO1 and 05K22RO2. A vacuum sealed prototype of an electro-optical bunch-arrival-time monitor has been commissioned in 2023. It comprises of a pickup-structure and a low-pi-voltage ultra-wideband traveling wave electro-optical modulator. The stainless-steel body of the pickup structure is partially produced by additive manufacturing and comprises four pickups as well as an integrated combination network on a printed circuit board. This novel design aims to enable single-shot bunch-arrival-time measurements for electron beams in free-electron lasers with single-digit fs precision for low bunch charges down to 1 pC. The theoretical jitter charge product has been estimated by simulation and modeling to be in the order of 9 fs pC. The new prototype is tailored for validation experiments at the ELBE accelerator beamline. In this contribution first measurement results are presented. |
||
Poster TUP012 [2.469 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP012 | |
About • | Received ※ 06 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 17 September 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |