Author: Hu, J.YC.
Paper Title Page
TU3C02 FPGA Architectures for Distributed ML Systems for Real-Time Beam Loss De-Blending 160
 
  • M.A. Ibrahim, J.M.S. Arnold, M.R. Austin, J.R. Berlioz, P.M. Hanlet, K.J. Hazelwood, J. Mitrevski, V.P. Nagaslaev, A. Narayanan, D.J. Nicklaus, G. Pradhan, A.L. Saewert, B.A. Schupbach, K. Seiya, R.M. Thurman-Keup, N.V. Tran
    Fermilab, Batavia, Illinois, USA
  • J.YC. Hu, J. Jiang, H. Liu, S. Memik, R. Shi, A.M. Shuping, M. Thieme, C. Xu
    Northwestern University, Evanston, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with the United States Department of Energy. Additional funding provided by Grant Award No. LAB 20-2261 [1]
The Real-time Edge AI for Dis­trib­uted Sys­tems (READS) pro­ject’s goal is to cre­ate a Ma­chine Learn­ing (ML) sys­tem for real-time beam loss de-blend­ing within the ac­cel­er­a­tor en­clo­sure, which houses two ac­cel­er­a­tors: the Main In­jec­tor (MI) and the Re­cy­cler (RR). In pe­ri­ods of joint op­er­a­tion, when both ma­chines con­tain high in­ten­sity beam, ra­dia­tive beam losses from MI and RR over­lap on the en­clo­sure¿s beam loss mon­i­tor­ing (BLM) sys­tem, mak­ing it dif­fi­cult to at­tribute those losses to a sin­gle ma­chine. In­cor­rect di­ag­noses re­sult in un­nec­es­sary down­time that in­curs both fi­nan­cial and ex­per­i­men­tal cost. The ML sys­tem will au­to­mat­i­cally dis­en­tan­gle each ma­chine¿s con­tri­bu­tions to those mea­sured losses, while not dis­rupt­ing the ex­ist­ing op­er­a­tions-crit­i­cal func­tions of the BLM sys­tem. Within this paper, the ML mod­els, used for learn­ing both local and global ma­chine sig­na­tures and pro­duc­ing high qual­ity in­fer­ences based on raw BLM loss mea­sure­ments, will only be dis­cussed at a high-level. This paper will focus on the evo­lu­tion of the ar­chi­tec­ture, which pro­vided the high-fre­quency, low-la­tency col­lec­tion of syn­chro­nized data streams to make real-time in­fer­ences.
Performed at Northwestern with support from the Departments of Computer Science and Electrical and Computer Engineering
 
slides icon Slides TU3C02 [17.830 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TU3C02  
About • Received ※ 07 September 2023 — Revised ※ 10 September 2023 — Accepted ※ 12 September 2023 — Issue date ※ 25 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)