LCLS-II Timing System and synchronous bunch data acquisition TH1101

Carolina Bianchini Mattison/ Senior Software Engineer / AD-EED 14th September 2023

Stanford | Discourse

Agenda

LCLS-II Timing System and synchronous bunch data acquisition

Beamline MAP

LCLS-II Timing System, DESIGN:

- Timing Requirements
- Timing Distribution
- Timing Pattern Frame (individual pulse)

Timing Pattern Requirements

Beam Synchronous Acquisition services

- Beam Synchronous Acquisition (BSA)
- Beam Synchronous Scalar System (BSSS)

Timing Pattern Generator Graphical User Interface (TPGGUI)

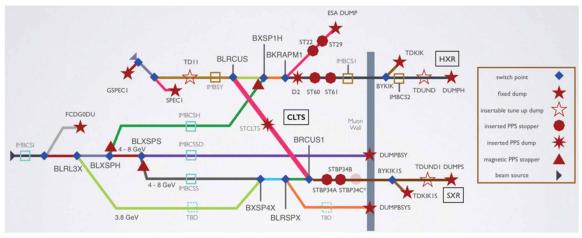
• Patterns Classification

Timing Pattern Receivers

Commissioning Experience

SLAC Accelerator Complex: LCLS/CLTS/LCLS-II

Beam Line Map of the two timing systems serving LCLS and LCLS-II


LCLS-II will add a superconducting accelerator, occupying one-third of SLAC's original 2-mile-long linear accelerator tunnel.

LCLS-II will provide a major jump in capability – moving from 120 pulses per second to 1 million pulses per second.

In addition to the new accelerator, LCLS-II requires a number of other cutting-edge components, including a new electron source, a powerful cooling plant that produces refrigerant for the accelerator, and new undulators to generate X-rays.

SLAC Accelerator Complex: LCLS/CLTS/LCLS-II

Beam Line Map of the two timing systems serving LCLS and LCLS-II

Map of LCLS / CLTS / LCLS-II highlighting the kickers and dumps

DESIGN: REQUIREMENTS

Timing Attribute	Value	
Phase Reference (Linac RF)	1300 MHz	
Clock (Gun RF = Linac RF/7)	185.71 MHz	0000000
Nominal Beam Rate (Clock/200)	0.92857 MHz	Phase Reference Line Long Haul Reference
Fiducial Resync Freq (Clock/2600)	0.07143 MHz	LCLS-I Main Drive Line
Fiducial (Power Line Phase)	360 Hz	Master Source
Stability - Standard (fiber)	0.4 ns	Beamline sensors and actuators Digitizers and Controllers
Stability – Phase reference line (PRL)	1 fs/sec, 1 ps/day	Timing Timing Generator Receiver Receiver
Jitter – Standard (fiber)	30 ps	Timing Distribution
Jitter – PRL (50Hz to 5kHz)	0.005⁰ or 10.7 fs	
		Channel Access Network

Operator

Timing Pattern Receivers

Timing Uptime (sec)

iming Link Status

Tri Enable

Disabled

Disabled

Disabled Disabled

Enabled Enabled

Enabled

Enabled

Enabled

Enabled Enabled

Enabled

Enabled

Enabled Enabled

Enabled *

...

Mode

File View History

Tpr Diagnostic TPR Name

Fiducial Counte

Trigger Num Desc

11

12

13

14

15

NC Kicker Abort

NC Kicker Standby NC Kicker User Abort

Fire Signal Generator (not used Bunch Present (NC Only)

NC BSA Stream (NC Only AMC0 Waveform Stream

AMC1 Waveform Stream

ADC 0 Coarse Window

ADC 1 Coarse Window

ADC 2 Coarse Window

ADC 3 Coarse Window

ADC 4 Coarse Window

ADC 5 Coarse Window

Front Panel Trigger (TrigOut) Bay 0

Front Panel Trigger (TrigOut) Bay 1

Every control system crate has a timing receiver.

The hardware is ATCA or PCIe platform.

Timing Pattern is analyzed based on modules: tprTrigger, bsaDriver and other libraries.

The devices are triggered (total 16 configurable triggers) based on the appropriate filters for the given location,

File View History Tools

SPD TPR SC Expert Display - PyDN

defined in one of the 16 channels.

SPD TPR Diagnostics Display - PvDM

SC							Tpr Diagnostics									Dev	Device System Information				
	3772350 Link Up		NC	SC Expt	SC	Trig		TPR N	ame il Counte	er.			PD:MP04:0 8769373	Timing Uptin		37723 Link	_	CLS2 master dela	y (nsec)	07692	
				NC Expt	NC	Trig		Mode					sc								
ole	TWID	TDES	Source	AND/OR	Pair Source	Rate		Ch #	Rate M	lode	Fixed	Rate	AC Rate	Timeslot Mas	k Ctrl Seq	Eng Ctrl Sec	Bit R	ate Dest Moo	ie Dest Mask	Ch Enable E	
•	0	0.00	Channel 00 *	Disable *	TRG01	0.0		00	Fixed	÷	1Hz	Ŧ	0.5Hz *	TimeSlot	0	0	0.0	Inclusive +	DestMask	-	
•	0	0.00	Channel 00 *	Disable *	TRG00	0.0		01	Fixed	+	1Hz	*	0.5Hz *	TimeSlot	0	0	0.0	Inclusive 👻	DestMask		
•	0	0.00	Channel 02 *	Disable *	TRG03	0.0		02	Fixed	•	1Hz	*	0.5Hz *	TimeSlot	0	0	0.0	Inclusive +	DestMask		
•	0	0.00	Channel 03 *	Disable *	TRG02	1.0		03	Fixed	*	1Hz	Ŧ	0.5Hz *	TimeSlot	0	0	1.0	Don't care 👻	DestMask		
•	0	0.00	Channel 04 *	Disable *	TRG05	0.0		04	Fixed	*	1Hz	*	0.5Hz *	TimeSlot	0	0	0.0	Inclusive +	DestMask	-	
•	0	0.00	Channel 05 *	Disable *	TRG04	0.0		05	Fixed	¥	1Hz	*	0.5Hz *	TimeSlot	0	0	0.0	Inclusive 🔹	DestMask		
•	0	0.00	Channel 06 ×	Disable *	TRG07	1.0		06	Fixed	*	1Hz	Ŧ	0.5Hz *	TimeSlot	0	0	1.0	Don't care 👻	DestMask	-	
•	0	0.00	Channel 06 *	Disable *	TRG06	1.0		07	Fixed	*	1Hz	*	0.5Hz *	TimeSlot	0	0	0.0	Inclusive *	DestMask		
•	0	0.00	Channel 08 👻	Disable +	TRG09	1.0		08	Fixed	+	1Hz		0.5Hz +	TimeSlot	0	0	1.0	Don't care 👻	DestMask	-	
•	0	0.00	Channel 09 👻	Disable +	TRG08	1.0		09	Fixed	*	1Hz	*	0.5Hz *	TimeSlot	0	0	1.0	Don't care 👻	DestMask		
•	0	0.00	Channel 10 ×	Disable 🔻	TRG11	930490.5		10	Fixed	*	1MHz	*	0.5Hz *	TimeSlot	0	0	930760.0	Don't care 👻	DestMask		
Ŧ	0	0.00	Channel 10 ×	Disable *	TRG10	930490.5		11	Fixed	*	1Hz	*	0.5Hz *	TimeSlot	0	0	0.0	Inclusive *	DestMask		
•	0	0.00	Channel 10 ×	Disable *	TRG13	930490.5		12	Fixed	*	1Hz	¥	0.5Hz *	TimeSlot	0	0	0.0	Inclusive *	DestMask		
•	0	0.00	Channel 10 *	Disable *	TRG12	930490.5		13	Fixed	*	1Hz	*	0.5Hz *	TimeSlot	0	0	0.01	Inclusive *	DestMask		
•	0	0.00	Channel 10 +	Disable +	TRG15	930490.5		14	Fixed	+	1Hz	*	0.5Hz *	TimeSlot	0	0	0.0	Inclusive 👻	DestMask		
•	0	0.00	Channel 10 *	Disable *	TRG14	930490.5	n	15	Fixed	*	1Hz	*	0.5Hz *	TimeSlot	0	0	0.0	Inclusive *	DestMask		

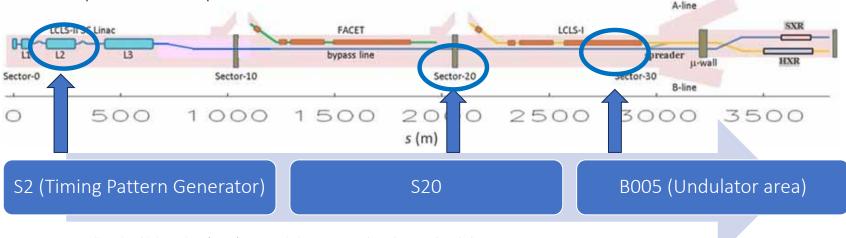
Event Counts

DESIGN: REQUIREMENTS

AC Rate compatibility for some of the devices, like Klystrons (XTCAV and STCAV). The triggering system for these devices needs to be synchronized to the AC Power line timeslots and up to a max 120Hz.

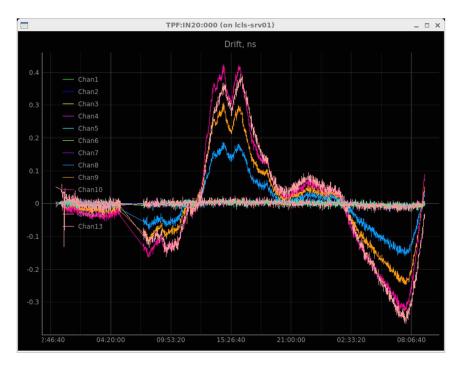
The requirement of the diagnostics devices along the machine is to take clean measurements. Since the performance of the above listed devices depends on the triggers being synchronized to the AC power line phase. If this isn't aligned the Klystron impulse will have a jitter in amplitude, not producing a clean measurement.

An example is in the Diagnostic Line destination, just after the gun where we'll expect to trigger on AC patterns limited to 120Hz.


The TCAV diagnostics provide a transverse kick of the electron beam. Their triggers must be aligned to the AC power line to minimize jitter.

DESIGN: TIMING DISTRIBUTION

LCLS-II Timing System is completely decoupled from LCLS-I Timing System.


Timing Pattern Generator (TPG) sends Timing Frames to each Timing Pattern Receiver (TPR) over a dedicated fiber network at 1MHz.

Challenge: signal stability over this long fiber network. Active Fanout devices operate at three strategic locations along the linac to provide drift compensation.

Carolina Bianchini Mattison (SLAC) LCLS-II Timing System and synchronous bunch data acquisition

DESIGN: TIMING DISTRIBUTION

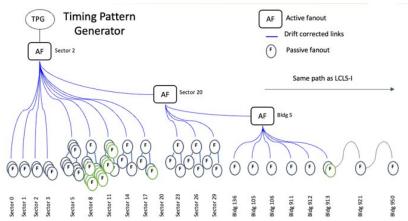


Figure shows the drift over 6 channels in S20 due to length and heat load.

Carolina Bianchini Mattison (SLAC) LCLS-II Timing System and synchronous bunch data acquisition

DESIGN: TIMING FRAME (at glance)

- Timestamp 0
- PulseID ->Label each pulse with global pulseID for correlation across devices 0
- Destination -> destination tag for each pulse
- Fixed Rates -> Fixed Rate Markers 0-9 one bit each computed by dividing 186MHz refclk by one of 1,13,91, 910, 9100, 91000
- AC Rates -> Power Line Synchronized markers (req. option to sync to power line) 0
- Beam Request -> Beam is requested by Inj gun 0
- Requested Charge [pC] 0
- Machine Protection System (MPS) Valid 0
- Beam Containment System (BCS) Fault Ο
- MPS Limiting Ο
- **MPS** Limits 0
- Beam Synchronous Acquisition (BSA) fields (Init; Active: AvgDone; Update) * \cap
- Sequence Control Bits 288 0

**This will be explained in the next few slides* The timing pattern consists of a sequence of timing frames, which contains data set by firmware and software.

Carolina Bianchini Mattison (SLAC) LCLS-II Timing System and synchronous bunch data acquisition

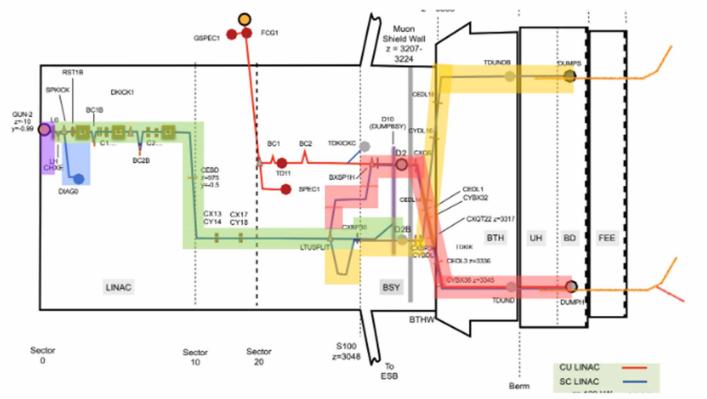
Timing Pattern Requirements

Table 2: A list of beam allowable rates incre nominally 1 Hz.

Nominal rate	Exact rate				
Zero rate	0				
Single shot	Once, on req				
Burst mode	Specify numlSpecify space				
1 Hz	0.928 Hz				
10 Hz	9.28 Hz				
50 Hz	46.4 Hz				
100 Hz	92.8 Hz				
1 kHz	0.928 kHz				
10 kHz	9.28 kHz				
100 kHz	92.8 kHz				
Half rate	464.285 kHz				
Full rate	928.571 kHz				

	FIXED RATE Patterns	Burst Spacing	Burst bunch(es)
	OHz	2-20	100
	Single shot	9	2;5;10;20;50;100
	1Hz	1,2	1;2-
	10Hz		21;50;100;200;500; 1000;2000
	50Hz	10000	2
	100Hz		2
	1KHz	AC RATE Patterns	
	10KHz	OHz	
	100KHz	1Hz	
	496KHz	10Hz	
	930KHz	30Hz	
		60Hz	
		110Hz	
/stei	m and synchronous bunch data	119Hz	11
		120Hz	

SLAC


Carolina Bianchini Mattison (SLAC) LCLS-II Timing Sys acquisition

Timing Pattern Requirements

Timing Pattern Generator has 3 main types of Engines on FPGA:

- Beam Engines: Schedule beam patterns
- Allow Engines: Handshake MPS/Timing
 - Allow table agreement on
 (spacing between pulses with beam, charge and window to evaluate the pattern)
- Experimental/Control Engines: Controls bits to support multi-destination beam, beam synchronous acquisitions, experiments requirements...

		L	CLSHo	ome							pen EDM page Open Ini new window
Source: ONC	SC Destinations: DIAGO B	SYDump HXR	SXR							EDM Area M	lain
Home View	LOBAI GUNB LOB L1B L2B	L3B EXT DOG	BYP SPI	R DASE	L BSY0 LTU	IH LTU	SUNDH	UNDS	DMPH	DMPS FEEH FE	ES NEH1 XRT1
All			SC T	IMING P	ATTERN SEL	ECTIO	J				
BPM/Toro/BLen											1
Feedback	Mode Rules Table Select Mode *			Mod	de: SC18					BSA Buffer List	Expert Display
Magnet		Continuous Pattern Se	lect								
Profile Monitor		Rate Mo	de: 💿 Fixed	O AC							sh/Load o TPG
Wire Scanner	Continuous	Destinat		SC_DIAG	SO SC_BSYD	SC_HXR	SC_S				
Coll./Motion	Continuous	Freque	-		• • •		•	* .			
Coll./Motion		Selected Frequer Bunch Charge Set Po		OHz	0Hz pC	0Hz	1Hz			,	Apply
10		Select									
Cryo		stinati		SC_DIA	G0 SC_BSYD	SC_HXP	SC_S	XR			
ODM		Patt unche		-	* . *		· -	•			
Event	🔘 Burst	Sele Bunch Pa space		0	0	4	1			Pattern Found	
		Selected Space		4	· · ·	1	* - 1	•			
Network		Bunch Charge Set Po		-	pC	-	<u></u>				
Utilities						<u> </u>			_		
Vacuum				SC TI	MING STATU	s					
Temperature	Destination: LASER ONLY		SC_DIAG0		SC_BSYD		SC_HXR		SC_S		C_DASEL
MPS	Request Rate: 0 Actual Rate: 0))		0		0 0		10 10	(
	Actual Rate: 0 MPS Beam Class RBV: Unlimited) Beam Off		0 Diagnostic		u Beam Off		10 BC10) Beam Off
PPS	Timing Beam Class set PV: Diagnostic	*	BC120Hz		BC10Hz	*	BC10Hz		BC10		Kicker STBY 🔹
BCS	Timing Beam Class RBV: Beam Off		Beam Off		BC10Hz		Beam Off		BC10		Beam Off
X-Ray/Misc	Loaded Pattern: 0 Hz Charge Set Point RBV: 50	nC) Hz		0 Hz		0 Hz		10 Hz) Hz

SLAC Carolina Bianchini Mattison (SLAC) LCLS-II Timing System and synchronous bunch data acquisition

Timing Pattern Requirements – Compatibility lookup table

Mode		SC10	SC11	SC12	SC13	SC14	SC15	SC16	SC17	SC18	SC19	Type Patterns MPS Allowed
	Destination Per modes	SC1 Laser	SC1 Gun	SC1 TDINJ	SC1 DIAG0	SC1 DumpBSY	SC1 TDUNDHXR	SC1 TDUNDSXR	SC1 DUMPHXR	SC1 DUMPSXR	SC1 S30XL	
SC10	SC1 Laser	-										Override All
SC11	SC1 Gun		-									Screen limit 10Hz
SC12	SC1 TDINJ			-								Full rate and charge
SC13	SC1 DIAG0				-							AC Rates up to 120Hz
SC14	SC1 DumpBSY				Comp, Interl.	-						Full power but below 120KW
SC15	SC1 TDUNDHXR				Comp, Interl.	Comp, Interl.	-					10Hz
SC16	SC1 TDUNDSXR				Comp, Interl.	Comp, Interl.	Comp, Interl.	-				10Hz
SC17	SC1 DUMPHXR				Comp, Interl.	Comp, Interl.	Comp, Interl.	Comp, Interl.	-			Full rate
SC18	SC1 DUMPSXR				Comp, Interl.	Comp, Interl.	Comp, Interl.	Comp, Interl.	Comp, Interl.	-		Full rate
SC19	SC1 S30XL				Comp, Interl.	Comp, Interl.	Comp, Interl.	Comp, Interl.	Comp, Interl.	Comp, Interl.	-	Special case has 3 modes

BEAM SYNCHRONOUS DATA SERVICES

This is a Single Pulse machine: The data acquisition requirement is to have all devices acquiring on the same bunch

SC BSA provides data buffers time stamped by the SC Timing System (Timing Pattern Generator - TPG).

SC BSA provides data filtering according to user needs.

SC BSA provides data buffers:

Maximum of 20000 data points.

Each data point can be an average of up to 8000 beam pulses

Maximum rate up to 1MHz

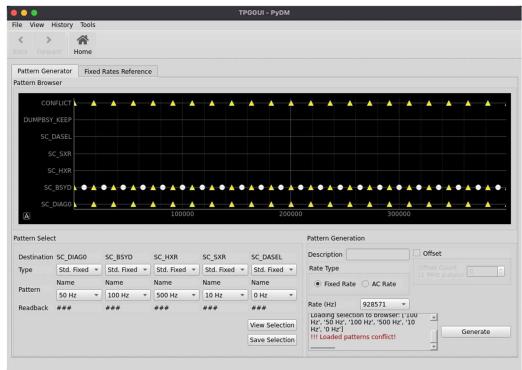
Beam Synchronous Scaler Service (BSSS) provides pulse by pulse scalers up to 100Hz for control room displays

BEAM SYNCHRONOUS DATA SERVICES

29 User Defined Buffers	System BSA Buffer	Beam Destination(s)	Beam Rate to beam destination(s)		
	SC D 1H	D = Diag0	1 Hz		
• 15 SYS Buffers	SCDTH	D = Diag0	10 Hz		
Example:	SCDHH	D= Diag0	100 Hz		
SCD1H =	SCL1H	L=LINAC (= SC_BSYD OR SC_HXR OR SC_SXR)	1 Hz		
SC -> Super Conducting	SCLTH	L=LINAC (= SC_BSYD OR SC_HXR OR SC_SXR)	10 Hz		
D -> Diag0	SCLHH	L=LINAC (= SC_BSYD OR SC_HXR OR SC_SXR)	100 Hz		
D -> Dlago	SC B 1H	B = <i>SC_BSYD</i>	1 Hz		
1H -> 1Hz	SCBTH	B = <i>SC_BSYD</i>	10 Hz		
	SC B HH	B = <i>SC_BSYD</i>	100 Hz		
11 lis for the erebine	SC H 1H	H= SC_HXR	1 Hz		
1H is for the archive TH is for displays	SC H TH	H= SC_HXR	10 Hz		
HH is for physics apps	<i>SC</i> H <i>HH</i>	H= SC_HXR	100 Hz		
	SC S 1H	S = SC_SXR	1 Hz		
	SC S TH	S = SC_SXR	10 Hz		
SLAC Carolina Bianchini Mattison acquisition	<i>SC</i> S <i>HH</i>	S = SC_SXR	100 Hz		


Timing Pattern Generator

Patterns Classification:


- Standard Patterns: Single destination patterns for Fixed Rates, AC Rates and bursts.
- Complex Patterns:
 - Pulse Stealing: all pulses with beam land on the Fixed Rate Markers distributed as part of the timing pattern. In case of multiple destination requesting beam, destination priority assigns beam pulses
 - Interleaved Patterns: each destination is assigned an offset from the closest fixed rate marker to the requested beam rate. The subharmonic frequency that allows to lock the two LINAC (LCLS-I and LCLS-II) is 71.5KHz. Between two fixed rate pulses at 71.5KHz there are 13 empty pulses. The offset of empty pulses from a Fixed Rate marker, per destination, is then selected to be one of the prime numbers <13. Such as: 3 for DIAG0, 5 for HXR and 7 for SXR. This logic allows to resolve the beam request conflict when requesting beam to two destination.
 - Bunch Train: user defined interval between beam patterns (uses the patterns from the first and second bullet)

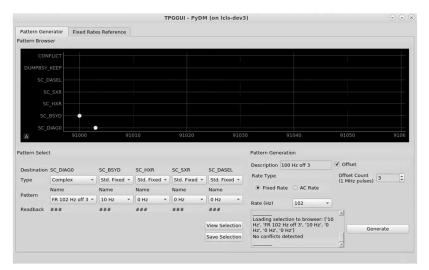
Timing Pattern Generator (TPG) Graphical User Interface (GUI)

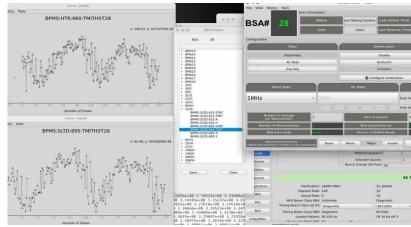

- The timing system sends out a timing pattern that contains relevant information to trigger the LASER system to generate beam and to the timing clients and devices along the SC LINAC.
- The timing pattern consists of a sequence of timing frames, which contains data set by firmware and software.
- The firmware defines information that is constantly sent out to identify frames, such as rate specific markers, pulse ID. Other bits in the timing frame are machine operation sensitive and need to be configured at a higher level.
- The TPGGUI is the software tool used to program timing frames, updating information to the timing pattern to fulfill Operation requirements.
- The TPGGUI allows operations to program more complex patterns and schedule beam going to multiple destinations while meeting machine and personnel safety requirements.

Timing Pattern Generator Graphical User Interface (TPGGUI)

Carolina Bianchini Mattison (SLAC) LCLS-II Timing System and synchronous bunch data acquisition

Commissioning Experience: SC_DIAG0 and SC_BSYD pulse stealing


Equally spaced pattern where beam is schedule to both destination in DIAGO and BSYD. BSYD having higher priority. Scheduled pattern will be 100Hz to DIAGO and 10Hz to BSYD


with result to have 90Hz to DIAG0 and 10Hz to BSYD.

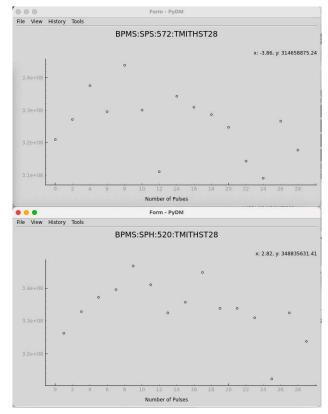
Commissioning Experience: SC_DIAG0 and SC_BSYD Interleaved

Not equally spaced pattern where beam is schedule to both destination in SC_DIAGO and SC_BSYD. SC_DIAGO is off by 3 pulses from Fixed Rate Marker 100Hz. Scheduled pattern will be 100Hz to DIAGO and 10Hz to BSYD with result to have 100Hz to DIAGO and 10Hz to BSYD.

SLAC

				TPGGUI - Py	DM (on Icls-de	ev3)	\odot $($
Pattern Ger	nerator Fixe	d Rates Referen	ce				
attern Brow	iser						
CON							
DUMPBSY	KEEP						
SCI	DASEL						
	C_SXR -						
				14 16	18 20 22	24 26 28 30 32 34	36 38 40 42 44 4
A	0	2 4 0	8 10 12	14 16 .	18 20 22	24 20 28 30 32 34	50 58 40 42 44 4
attern Seleo	ct					Pattern Generation	
						Description 1 Hz off 7	☑ Offset
Destination	Std. Fixed *	SC_BSYD Std. Fixed *	SC_HXR Complex *	SC_SXR Std. Fixed *	SC_DASEL Std. Fixed *	Rate Type	Offset Count 7
Type	Name	Name	Name	Name	Name	Fixed Rate AC Rate	(1 MHz pulses)
Pattern	0 Hz *		FR 1 Hz off 7 *	1 Hz 👻			
Readback	###	###	###	###	###	Rate (Hz) 1 -	
						Loading selection to browser: ['0	<u>_</u>
					View Selection	Hz', '0 Hz', '0 Hz', 'FR 1 Hz off 7', Hz', '0 Hz']	1 Generate
					Save Selection	No conflicts detected	

Commissioning Experience: SC_HXR and SC_SXR Interleaved


Not equally spaced pattern where beam is schedule to both destination in SC_HXR and SC_SXR.

SC_HXR here is off by 5 pulses from Fixed Rate Marker 1Hz and SC_SXR is on the mark.

Scheduled pattern will be 1Hz to SC_HXR and 1Hz to SC_SXR with result to have 1Hz to SC_HXR and 1Hz to SC_SXR.

Carolina Bianchini Mattison (SLAC) LCLS-II Timing System and synchronous bunch data acquisition

Thank you

Carolina Bianchini Mattison carolina@slac.stanford.edu

