

A MTCA based BPM System for PETRA IV

12th International Beam Instrumentation Conference

Canadian Centre canadien Light de ravonnement

SASKATOON, CANADA September 10-14, 2023

Saskatoon, 11.9.2023

on behalf of Hans-Thomas Duhme, Frank Schmidt-Föhre, Kay Wittenburg DESY - Hamburg Jonas Lamaack University of Hamburg Aleš Bardorfer, Luka Bogataj, Manuel Cargnelutti, Peter Leban, Matej Oblak, Peter Paglovec, Borut Repič I-Tech, Solkan

HELMHOLTZ

- introduction: PETRA IV
- BPM requirements and boundary conditions
- system overview
- TbT resolution studies
- drift stability
- summary

Outline

- introduction: PETRA IV •
- BPM requirements and boundary conditions •
- system overview •
- TbT resolution studies •
- drift stability ٠
- summary ٠

Diffraction Limited Storage Ring

Principle Ideas

Diffraction limit

single electron

PETRA III

electron bunch

PETRA IV electron bunch

natural emittance scaling •

 $\varepsilon_x \propto \gamma^2 \theta^3 \Gamma$

- $\gamma = \frac{E}{m_0 c^2}$ Lorentz factor
- θ : bend. magnet angular deflection
- Γ: magn. lattice design of storage ring

 reduction of beam energy E defines radiation spectrum:

emittance reduction

 $\hbar\omega_c \approx 0.665 E^2 B$

 \circ reduction of deflection angle θ per bend from double bend achromat (2) to multi-bend achromat (5,6,7,9,..) MAX-IV, ESRF-EBS, SIRIUS APS-U, PETRA IV, ...

PETRAIV.

- 1978 1986: e+e- collider PETRA (up to 23.3 GeV / beam) with circumference 2304 m
- 1988 2007: pre-accelerator PETRA II for HERA (p @ 40 GeV, e @12 GeV)
- since 2007: dedicated 3rd generation light source PETRA III, commissioned in 2009 TDR DESY 2004-035

 \rightarrow 14 beamlines (15 experimental stations) operating in parallel

• from 2014: staged extension project W. Drube *et al.*, 2016 https://doi.org/10.1063/1.4952814

 \rightarrow up to 12 additional beamlines (presently not all of them in operation)

History

- 1978 1986: e+e- collider PETRA (up to 23.3 GeV / beam) with circumference 2304 m
- 1988 2007: pre-accelerator PETRA II for HERA (p @ 40 GeV, e @12 GeV)
- since 2007: dedicated 3rd generation light source PETRA III, commissioned in 2009 TDR DESY 2004-035

 \rightarrow 14 beamlines (15 experimental stations) operating in parallel

- from 2014: staged extension project W. Drube *et al.*, 2016 https://doi.org/10.1063/1.4952814
 - \rightarrow up to 12 additional beamlines (presently not all of them in operation)
- Paul P. Ewald ODR DOI: 10.3204/PUBDB-2019-03613 at present: work on PETRA IV project Max von Laue new Hall ring-based diffraction limited light source FLASH Ch. Schroer *et al.*, J Synchrotron Rad. 25 (2018) 1277 European XFEL 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2020 Ada Yonath Preparation Oneration Iman Pronosa PETRA IV

PETRA IV

Layout and Parameters

I. Agapov *et al.*, submitted to Phys. Rev. Accel. Beams

general machine layout

- Hybrid 6-Bend Achromat (H6BA) lattice
 - o natural emittance: $\epsilon \approx 43$ pm.rad
 - use of damping wigglers: $\epsilon = 20 \text{ pm.rad}$

PETRA IV

Layout and Parameters

I. Agapov et al., submitted to Phys. Rev. Accel. Beams

- Hybrid 6-Bend Achromat (H6BA) lattice
- natural emittance: $\epsilon \approx 43$ pm.rad
 - use of damping wigglers: $\epsilon = 20 \text{ pm.rad}$

general machine layout

S

- operational modes (baseline design)
 - o brightness mode: 1920 bu. ($\Delta t = 4ns$) in 200 mA
 - timing mode: 80 bu. ($\Delta t = 96$ ns) in 80 mA

PETRA IV

Layout and Parameters

I. Agapov *et al.*, submitted to Phys. Rev. Accel. Beams

general machine layout

- Hybrid 6-Bend Achromat (H6BA) lattice
 - natural emittance: $\epsilon \approx 43$ pm.rad
 - use of damping wigglers: $\epsilon = 20 \text{ pm.rad}$

- operational modes (baseline design)
 - o brightness mode: 1920 bu. ($\Delta t = 4ns$) in 200 mA
 - timing mode: 80 bu. ($\Delta t = 96$ ns) in 80 mA

- extensions (under discussion)
 - \circ 3840 bu. ($\Delta t = 2ns$) operation (each bucket filled)
 - \circ 40 bu. ($\Delta t = 192$ ns) in 80 mA

 $\approx 10^{11}$ particles / bunch

DESY. | 12th IBIC, Saskatoon (Canada) | 11.9.2023 – Gero Kube

Beam Position Monitor (BPM) System for PETRA IV

Requirements

Beam commissioning \rightarrow accuracy \leq 500 µm

- alignment errors of BPMs wrt. adjacent quadrupoles
- electronic offsets (differences in gain factors among readout channels)
- electro-mechanical offsets (mechanical tolerances, asymmetries among the four buttons)
 - tolerance margin of 150 μm for each (+ additional safety margin)

(BPM measurement accuracy must satisfy requirements for BBA)

i ≤ 100 μm

Page 10

careful design

Beam Position Monitor (BPM) System for PETRA IV

Requirements

BPM Electronics: Boundary Conditions

- Number of BPMs: about 800
- 9 BPMs per cell / 72 cells \rightarrow 648 BPMs in arcs
- additional BPMs in short/long straight sections

In-house development: no time and manpower

Libera Brilliance: will not fulfil requirements

Libera Brilliance+:

- in use at MAX-IV
- planned for APS-U

would fulfil requirements

2.5

commercial solution

= 10 mm

BPM resolution (K

0.5

bunch current / mA

≤ 10 k€ (per channel)

G Kube *et al.*, Proc. IBIC2019, Malmö (Sweden) WEPP005.

BPM Electronics: DESY Strategy

Drawback Libera Brilliance+

- long term stabilization starts at RF front-end
- about 10 years old technical platform

influence of cable paths!

PETRAIV.

BPM Electronics: DESY Strategy

Drawback Libera Brilliance+

- long term stabilization starts at RF front-end
- about 10 years old technical platform

DESY lab strategy: MTCA.4 as technical platform

influence of cable paths !

obsolence of components

DESY. | 12th IBIC, Saskatoon (Canada) | 11.9.2023 – Gero Kube

BPM System for PETRA IV

BPM Electronics: DESY Strategy

Drawback Libera Brilliance+

- long term stabilization starts at RF front-end
- about 10 years old technical platform

DESY lab strategy: MTCA.4 as technical platform

Development project with industrial partner

- prototype development of MTCA.4 based BPM system
- long term stabilization scheme including cable paths
- functional prototype at end of TDR phase \rightarrow fully equipped crate ready for tests at PETRA III

Long term strategy

• industrial partner brings in ability to perform mass production & QA for PETRA IV

- influence of cable paths !
- obsolence of components

Long-Term Drift Compensation

Long term stabilization scheme including cable paths

- pilot tone compensation
- external crossbar switching

Long-Term Drift Compensation

Long term stabilization scheme including cable paths

• pilot tone compensation

F. Schmidt-Föhre *et al.*, Proc. IBIC2021, Pohang (Korea) MOPP36.

Long-Term Drift Compensation

Long term stabilization scheme including cable paths

- pilot tone compensation
- external crossbar switching

Proof-of-principle studies at PETRA III with modified Libera Brilliance+

F. Schmidt-Föhre et al., Proc. IBIC2021, Pohang (Korea) MOPP36.

Long-Term Drift Compensation

Long term stabilization scheme including cable paths

- pilot tone compensation
- external crossbar switching

Proof-of-principle studies at PETRA III with modified Libera Brilliance+

PEIRAIV.

F. Schmidt-Föhre *et al.*, Proc. IBIC2021, Pohang (Korea) MOPP36.

Long-term drift study

• 480 bunches @120 mA

MTCA.4 based BPM System

System Overview

Building blocks and interconnections

DESY. | 12th IBIC, Saskatoon (Canada) | 11.9.2023 - Gero Kube

MTCA Installation at PETRA III

System Overview

Prototype MTCA-based system installed at PETRA III: (end of 2022)

12 (8) BPMs, operated in parallel with existing Libera Brilliances

MTCA Installation at PETRA III

System Overview

Prototype MTCA-based system installed at PETRA III: (end of 2022)

12 (8) BPMs, operated in parallel with existing Libera Brilliances

only 2 MTCA crates per rack

Measurements with Beam (start spring 2023)

FA data path (fs = 10 kHz), BPM at undulator entrance

- standard user operation: 480 bunches @ 120 mA
- hor. beam spectrum (Power Spectral Density PSD_x)

Measurements with Beam (start spring 2023)

FA data path (fs = 10 kHz), BPM at undulator entrance

- standard user operation: 480 bunches @ 120 mA
- hor. beam spectrum (Power Spectral Density PSD_x)

Measurements with Beam (start spring 2023)

FA data path (fs = 10 kHz), BPM at undulator entrance

- standard user operation: 480 bunches @ 120 mA
- hor. beam spectrum (Power Spectral Density PSD_x)

PETRAIV.

- 6.25 Hz: DESY II booster cycle
- influence from injection

Measurements with Beam (start spring 2023)

FA data path (fs = 10 kHz), BPM at undulator entrance

- standard user operation: 480 bunches @ 120 mA
- hor. beam spectrum (Power Spectral Density PSD_x)

• 6.25 Hz: DESY II booster cycle

• PSD_x with injection gated out:

Remedies

Influence of beam motion

- much stronger than expected
 - mimicking / hiding electronics noise

has to be eliminated

٠

٠

NEW DI

Remedies

Influence of beam motion

- much stronger than expected
 - mimicking / hiding electronics noise

has to be eliminated

• install 4-way splitter in signal path (06/09/2023)

all spurious lines eliminated

 disadvantage: no orbit information from BPM studies restricted to single BPM

rms resolution

- specification: < 100 nm @ 1 kHz BW
- measurement: **70 nm** @ K = 10 mm

PETRA IV: K < 10 mm

•

>

MTCA

>

LB

- TbT data path ($f_0 = 130.1 \text{ kHz}$), rms for full BW
- Libera Brilliance: $rms \approx 1 \ \mu m$
 - MTCA system: $rms \approx 300 nm$

Page

significant improvement

500 1000 1500 2000 2500 3000 3500 4000 bandwidth / Hz

FA data path, BPM at undulator entrance

 $K_{x} = 10 \text{ mm}$

Long Term Stabilization

SA data path (fs = 10 Hz)

• no beam jitter cancellation

BPM in DBA cell

PETRA IV.

poster presentation: J. Lamaack (MOP021)

Long Term Stabilization

SA data path (fs = 10 Hz)

• no beam jitter cancellation

BPM in DBA cell

poster presentation: J. Lamaack (MOP021)

BPM at undulator entrance

Long Term Stabilization

SA data path (fs = 10 Hz)

• no beam jitter cancellation

BPM in DBA cell

PETRAIV.

poster presentation: J. Lamaack (MOP021)

BPM at undulator entrance

Long Term Stabilization with Beam Jtter Cancellation

SA data path (fs = 10 Hz)

- measurement for 1¹/₂ days
- specification: < 1 µm over 6 days

• Brilliance: ~ 1.35 μ m • MTCA: ~ 0.6 μ m \int over 1½ day

Sep 07, 12:00

time

Sep 08, 00:00

2023

Sep 07, 00:00

Long Term Stabilization with Beam Jtter Cancellation

SA data path (fs = 10 Hz)

- measurement for 1¹/₂ days
- specification: < 1 µm over 6 days

Brilliance: ~ 1.35 μm
 MTCA: ~ 0.6 μm

- MTCA system
 - o continuous (but smooth) drift in x (and y) data
 - o assumption: quick & dirty setup with 4-way splitter

has to be investigated in detail after IBIC

Sep 07, 12:00

time

Sep 08, 00:00

2023

-850 -900

Sep 07, 00:00

Long Term Stabilization with Beam Jtter Cancellation

SA data path (fs = 10 Hz)

- measurement for 1¹/₂ days
- specification: < 1 µm over 6 days

Brilliance: ~1.35 μm
 MTCA: ~0.6 μm

- MTCA system
 - o continuous (but smooth) drift in x (and y) data
 - assumption: quick & dirty setup with 4-way splitter has to be investigated in detail after IBIC
- Libera Brilliance
 - larger drift, especially after beam loss
 external crossbar switching copes better with sudden changes

Long Term Stabilization with Beam Jtter Cancellation

SA data path (fs = 10 Hz)

- measurement for 1¹/₂ days
- specification: < 1 µm over 6 days

• Brilliance: ~ 1.35 μ m • MTCA: ~ 0.6 μ m \int over 1½ day

- MTCA system
 - o continuous (but smooth) drift in x (and y) data
 - assumption: quick & dirty setup with 4-way splitter has to be investigated in detail after IBIC
- Libera Brilliance
 - larger drift, especially after beam loss
 external crossbar switching copes better with sudden changes

measurements will continue after IBIC

DESY. | 12th IBIC, Saskatoon (Canada) | 11.9.2023 - Gero Kube

- introduction to PETRA IV and its BPM system
- MTCA based BPM system continuously in operation since end of 2022
 - \rightarrow no failure detected since the beginning
- beam jitter mimicks electronics noise

has to be eliminated in order to be sensitive on monitor resolution

- closed orbit (& first turn) specifications fulfilled (FA and TbT data path) significant improvement compared to Libera Brilliance
 comparable to Libera Brilliance+
- long term stability

external crossbar switching compensates well

unknown drift in position reading (nevertheless within specification after 1¹/₂ day)

- introduction to PETRA IV and its BPM system
- MTCA based BPM system continuously in operation since end of 2022
 - \rightarrow no failure detected since the beginning
- beam jitter mimicks electronics noise

has to be eliminated in order to be sensitive on monitor resolution

- closed orbit (& first turn) specifications fulfilled (FA and TbT data path) significant improvement compared to Libera Brilliance
 comparable to Libera Brilliance+
- long term stability

external crossbar switching compensates well

unknown drift in position reading (nevertheless within specification after 1¹/₂ day)

has to be investigated and improved

..thank you very much for your attention

Contact

DESY. Deutsches Elektronen-Synchrotron

MDI group gero.kube@desy.de +49 40 8998 3077

Gero Kube

www.desy.de