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Canadian Light Source 
CLS (Canadian Light Source) is a synchrotron light source. There are 12
sections in the storage ring, which runs at 2.9 GeV. Every cell contains four
horizontal and vertical beam position monitors (BPMs), and 4 orbit corrector
magnets (OCMs).
The SVD can be calculated at all BPMs, by adjusting the strength of each
OCM.

Abstract
The Canadian Light Source (CLS) uses a 48-set orbit correction system (OCS) with BERGOZ beam position monitors (BPM) to track beam positions at 900 Hz. The Inverse
Response Matrix (IRM) is employed to optimize beam path using 48 sets of orbit correctors. The study proposes replacing SVD with the neural network algorithm, featuring a
3-layer model with 96 nodes each. The neural network's typical MSE in CLS operations is 10-7. Testing the OCS at 8.0 mA with various challenges showed the new model
effectively generated required orbit corrector signals.

Neural Network Model
The first layer should consist of 96 neurons for 96 BPMs data, because the
number of neurons depends on the inputs, in addition, there are 96 outputs
for 96 OCMs.
The same number of inputs and outputs prevent us from expanding nodes in
hidden layers, so we select 96 nodes per hidden layer. Modeling of the
TensorFlow-Keras library was performed, MSE was around 10−7.
The Hyperbolic Tangent (𝑇𝑎𝑛ℎ) was used because the input data changed
between -1 and 1. 70 percent of the database was used for training and 30
percent for testing and finally the model was created.
The test mean square error is (3.1524 ∗ 10−7) and the train mean square error
is (3.1522 ∗ 10−7) with 20 epochs. The MSE values of testing and training
indicate that the new model is fairly accurate.
The initial model demonstrated real-time accuracy on stable data with
minimal errors. To accommodate significant beam position changes, the
neural network must be versatile, requiring diverse training data. A learning
loop is implemented, evaluating new datasets with the initial model,
updating it as needed for improved accuracy based on error thresholds,
ensuring the best-performing model replaces the previous one.

In this experiment, the BPM's values in different sections of the SR were
changed by adjusting the reference (offset) to create a desired beam position
situation(+1 and -1 mm) for the OC system. The system was tested at a beam
current of 8.0 mA.

Conclusion
Two conditions of the NN model's effectiveness were investigated, a stable
mode and a complex mode. The results for the stable mode demonstrate that
error rates decrease over time, from 1.1% per OC in the first experiment to
0.42% per OC after four steps. While this result was expected, it provides
further confirmation of the effective operation of the deep learning loops in the
NN model, which successfully reduces error rates over time in the stable mode
condition. The results of the second scenario are less clear than those of the
stable mode upgrade, although they do exhibit a decreasing trend in error rates
despite some fluctuation(Last Picture). There shows a decreasing trend in
prediction errors for a specific data set(upgrades1 and 2), but the deep learning
model is unable to generalize its performance to new data sets(upgrade 3)
without further training. However, next step training result in reduced errors on
new data sets(upgrades 4, 5). This cycle continues, and the errors decrease
smoothly over time.
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Experiments and Results
In the first scenario, when the system is functioning normally, we conducted the
learning loop four times. During the first phase, we developed the model, while
the second to fourth phases involved updating the model.
In the second scenario, the beam position is expected to undergo a sudden
change, presenting a challenging situation for the OCS. We aim to investigate
whether this loop can update a model with memorized coefficients,
furthermore, we will calculate the error that arises during this process*.
* We introduced a metric called Accumulated Error (AE), which represents the sum of errors across all OCs.


