A NOVEL BPM MECHANICAL CENTER CALIBRATION METHOD BASED ON LASER RANGING

Xuhui Tang ${ }^{1}$, Yanfeng Sui ${ }^{1}$, Jun He, Yaoyao Du, Jianshe Cao, Junhui Yue ${ }^{\dagger}$
Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
${ }^{1}$ also at University of Chinese Academy of Science, Beijing, China

Abstract

Determining the mechanical center of the beam position monitor (BPM) has been a difficulty for BPM calibration. To solve this problem, a method of positioning the BPM mechanical center based on laser ranging is proposed. This method uses high-precision antenna support as the core locating datum, and high-precision laser ranging sensor (LRS) as the detection tool. By detecting the distances from the LRSs to the antenna support and the distances from the LRSs to the BPM, the mechanical center of the BPM can be indirectly determined. The theoretical system error of this method is within $20 \mu \mathrm{~m}$, and the experimental results show that the measurement repeatability is $15 \mu \mathrm{~m}$, This method has low cost and fast speed, which can be used for large-scale calibration.

INTRODUCTION

The BPM system, as the eyes of the particle accelerator, plays an important role in the stability of the beam orbit. About 600 BPMs are produced during the construction of High Energy Photon Source (HEPS) project [1]. Due to processing errors, the mechanical center and electrical center of BPM do not coincide. Therefore, each BPM is demanded to calibrate before use [2]. For the button-type BPM with 45-degree rotation, as shown in Fig. 1, the relationship between position coordinates and electrode signal amplitudes is defined as Eq. (1) [3].

Figure 1: A HEPS BPM and its define of electrode and beam coordinate system.
$x=K_{x} \frac{V_{a}+V_{d}-V_{b}-V_{c}}{V_{a}+V_{b}+V_{c}+V_{d}}+X_{\text {offset }}=K_{x} U+X_{\text {offset }}$
$y=K_{y} \frac{V_{a}+V_{b}-V_{c}-V_{d}}{V_{a}+V_{b}+V_{c}+V_{d}}+Y_{\text {offset }}=K_{y} V+Y_{\text {offset }}$
MOP026
where K_{x}, K_{y} are the BPM sensitivity coefficients, $X_{\text {offset }}$, $Y_{\text {offset }}$ are the difference between the BPM electrical center and mechanical center. The process of determining K_{x}, K_{y}, $X_{\text {offset }}$, and $Y_{\text {offset }}$ is called BPM calibration. A BPM automatic calibration system is shown in Fig. 2 and it is composed of an RF signal source, antenna (Goubau line), precision motion stages and their controller, BPM electronics, and the industrial personal computer [4, 5]. The Goubau line emits transverse electromagnetic (TEM) waves with the excitation of the RF signal source, so as to simulate the electromagnetic field of the charged particle beam in the accelerator to enable BPM calibration [5]. The BPM is driven by the precision motion stages to move in horizontal and vertical directions. The industrial computer saves the real BPM position data recorded by the controller and the calculated BPM position data from the BPM electronics. Then, the sensitivity coefficients and offsets are analyzed by the software algorithm.

Figure 2: Schematic of BPM automatic calibration system.
In general, it is relatively easy to ascertain the BPM electrical center, as long as the operator observes the four channels of BPM electronics and makes them equal by adjusting the BPM motion stage. To achieve this goal, it is necessary to ensure that the four channels of BPM electronics and the coaxial cables are calibrated. However, finding the mechanical center is extremely difficult, so it is hard to determine $X_{\text {offset }}$ and $Y_{\text {offset }}$.

A NEW APPROACH TO DETERMINING BPM MECHANICAL CENTER

The main difficulties in calibrating the mechanical center are as follows: firstly, it is not easy to ensure that the antenna is parallel to the axis of BPM; Secondly, it is almost impossible to directly measure the distance between
the antenna and the edge of the BPM vacuum chamber; Finally, the high accuracy requirement (tens of micrometers) poses great challenges for manual adjustment. In order to solve the problems above, a highprecision antenna positioning support was designed, and a high-performance laser ranging sensor (span $30 \pm 4 \mathrm{~mm}$, resolution $0.5 \mu \mathrm{~m}$) was introduced as the detection tool for the system self-inspection and seeking BPM mechanical center. The schematic diagram of the positioning system is shown in Fig. 3, where the uppercase letters XYZ represent the geodetic coordinate system (GCS) and lowercase letters $x y$ represent the BPM coordinate system. Figure 4 shows the distances that need to be measured to determine the BPM mechanical center, where H and L are the dimensions of BPM, H_{s} are the dimensions of the antenna support, r is the radius of the antenna, X_{s} and Y_{s} are the distances from the LRSs to the antenna support, and $X_{b p m}$ and $Y_{b p m}$ are the distances from the LRSs to BPM. When the antenna is located in the BPM mechanical center, the following relationship is satisfied:

$$
\begin{gather*}
Y_{s}+H_{s}=Y_{b p m}+\frac{H}{2}+r \tag{2}\\
X_{s}=X_{b p m}+\frac{L}{2}+r
\end{gather*}
$$

Transfer Eq. (2) to Eq. (3). When the position of BPM, namely $X_{b p m}$ and $Y_{b p m}$, have been adjusted to meet Eq. (3), it can be considered that the mechanical center of BPM has been found.

$$
\begin{gather*}
Y_{b p m_{-} M}=Y_{s}+H_{s}-\frac{H}{2}-r \tag{3}\\
X_{b p m_{-} M}=X_{s}-\frac{L}{2}-r
\end{gather*}
$$

In Eq. (3), the right side of the equals sign is the parameters of the positioning system. Moreover, only Y_{s} and X_{s} are measured values, the rest are all constants. As long as the system state is unchanged, $X_{b p m_{-} M}$ and $Y_{b p m_{-} M}$ are two constants. When the antenna is in the electrical center of BPM, let the distance measured by the two laser sensors be denoted by $X_{b p m_{-} E}$ and $Y_{b p m_{-} E}$, then the offset between the electrical center and the mechanical center can be calculated as

$$
\begin{gather*}
X_{\text {offset }}=-\left(Y_{b p m_{-} E}-Y_{b p m_{-} M}\right) \tag{4}\\
Y_{\text {offset }}=X_{b p m_{-} E}-X_{b p m_{-} M}
\end{gather*}
$$

The specific calibration operating steps are shown in Table 1.

In Table 1 , step 1 is a system self-test, which only needs to be performed once as long as the system state remains unchanged. Step 2 is to make the antenna parallel to the system, and steps 3-4 ensure that the BPM is parallel to the system. Steps 5 and 6 are optional operations. If calibrating from the mechanical center, proceed to step 5 . If only measuring offset, perform step 6.

ERROR ANALYSIS

The processing errors of the antenna support and BPM is the main source of system errors. Now assume that the size errors of the support and BPM are ΔH_{s} and ΔH, so the measured value Y_{s} in Eq. (3) will turn into $Y_{s}+\Delta H_{s}$, and

Figure 3: BPM machine center calibration method based on laser ranging.

Figure 4: The distances that need to be measured to determine BPM mechanical center.
$Y_{b p m_{-} E}$ will become $Y_{b p m_{-} E}+\Delta H$. Then, the offset in the Y direction is $X_{\text {offset }}^{\prime}=X_{\text {offset }}+\Delta H_{s}-\Delta H$. Similarly, $Y_{\text {offset }}^{\prime}=Y_{\text {offset }}+\Delta L-\Delta F$, where ΔL is the size error of the BPM in the X direction, and ΔF is the geometry error of the support's positioning plane. The error model is shown in Fig. 5.

Considering the worst-case scenario, when the error direction of the antenna support is opposite to the BPM, the total systematic errors are the sum of absolute values:

$$
\begin{align*}
& \Delta X_{\text {offset }}^{s}=\left|\Delta H_{s}\right|+|\Delta H| \tag{5}\\
& \Delta Y_{\text {offset }}^{s}=|\Delta L|+|\Delta F|
\end{align*}
$$

Table 1: The Steps to Determine the BPM Mechanical Center

adjust its position until the antenna is located at the electrical center, and measure $X_{b p m_{-} E}$ and $Y_{b p m_{-} E}$. Repeat the experiment 5 times in three different ways and observe the repeatability accuracy. The experimental data is shown in Table 3.
Table 3 shows that changing only the antenna or BPM results in small random errors, and the repeatability accuracy is within $10 \mu \mathrm{~m}$. If both of them are changed simultaneously, the repetition precision is approximately $15 \mu \mathrm{~m}$. The more objects that are changed, the more uncertainties are introduced and the greater the measurement error is obtained. In practical engineering, each calibration requires manual operation of the BPM and antenna at the same time, so the third row in Table 3 is the most realistic. On the basis of three-sigma rule, the range of measurement results is mostly within $\pm 30 \mu \mathrm{~m}$.

CONCLUSION

In order to quickly, low-cost, and high-precision measure the BPM electro-mechanical offset, a new method using precision antenna support and laser ranging sensor is proposed. The system's mechanical components are designed, and an automatic measurement program was developed. The resolution and maximum absolute error of this method are $15 \mu \mathrm{~m}$ and $20 \mu \mathrm{~m}$, respectively. Improving the machining accuracy and surface finish of the antenna support, and designing a more reliable antenna pressing mechanism can further improve the calibration accuracy.

ACKNOWLEDGEMENT

This work was funded by the Foundation of Youth Innovation Promotion Association, CAS (Y202005), and the Major achievements cultivation project of major scientific and technological infrastructure, CAS
(NE01G74Y2), and the National Natural Science Foundation of China (11805221).

Figure 6: The error model for BPM rotation around Z-axis.

Figure 7: The experimental platform.
Table 3: The Experimental Data (unit: $\mu \mathrm{m}$)

Measurement operation	$\boldsymbol{\sigma}_{\mathbf{x} \text { _offset }}$	$\boldsymbol{\sigma}_{\mathbf{y} \text { _offset }}$
Repeat installation of the BPM without changing the status of the antenna	3.3	10.2
Repeat installation of the antenna without changing the BPM status	8.1	2.4
Repeat the installation of the antenna and BPM simultaneously	15.4	12.2

Table 2: BPM Installation Errors Analysis

Error Source	Effect on Measurement	Elimination Method
Rotation around Xaxis	$\Delta X_{b p m_{-} E}^{r x}$ is difficult to evaluate. $\Delta Y_{b p m_{-} E}^{r x}$ is difficult to evaluate. $\Delta Y_{s}^{r x} \approx l_{1} \theta_{x}, l_{1}$ is the distance from the laser spot to the $\mathrm{X}-\mathrm{Y}$ plane. θ_{x} is the rotational error.	Hardware: Tighten the BPM mounting screws using a fixed torque wrench Software: The LRS1 scans along the Z-axis and the error $\Delta Y_{s}^{r x}$ can be eliminated by averaging the measured Y_{S} at multiple positions.
Rotation around Yaxis	$\Delta X_{b p m_{-} E}^{r y}$ is difficult to evaluate. $\Delta Y_{b p m_{-} E}^{r y}$ is difficult to evaluate. $\Delta X_{s}^{r y} \approx l_{2} \theta_{y}, l_{2}$ is the distance from the laser spot to the $\mathrm{X}-\mathrm{Y}$ plane. θ_{y} is the rotational error.	Hardware: Tighten the BPM mounting screws using a fixed torque wrench Software: The LRS2 scans along the Z-axis and the error $\Delta X_{s}^{r y}$ can be eliminated by averaging the measured X_{s} at multiple positions.
Rotation around Zaxis	$\Delta X_{b p m_{-} E}^{r z}$ is difficult to evaluate. $\Delta Y_{b p m_{-} E}^{r Z}$ is difficult to evaluate. $\Delta Y_{s}^{r z} \approx l_{3} \theta_{z}-H \theta_{z}^{2} / 2, l_{3}$ is the distance from the laser spot to the Y-Z plane. θ_{z} is the rotational error. $\Delta X_{S}^{r z} \approx l_{4} \theta_{z}, l_{4}$ is the distance from the laser spot to the $\mathrm{X}-\mathrm{Z}$ plane.	Hardware: Tighten the BPM mounting screws using a fixed torque wrench No feasible software elimination method

REFERENCES

